
5.1.2 How Far? Equilibrium

N Goalby chemrevise.org

Example 4 $N_{2}(g) + 3H_{2}(g) = 2 NH_{3}(g)$ For the following equilibrium Initially there were 1.5 moles of N₂ and 4 mole of H₂ in a 1.5 dm³ container. At equilibrium 30% of the Nitrogen had reacted. Calculate K_{c} NH_3 N_2 H_2 30% of the nitrogen had reacted = $0.3 \times 1.5 = 0.45$ moles reacted. Using the balanced equation 3 x 0.45 moles of H₂ must have Initial moles 1.5 4.0 0 reacted and 2x 0.45 moles of NH₃ must have formed ∇ Equilibrium moles Work out the moles at equilibrium for the reactants and products moles of reactant at equilibrium = initial moles - moles reacted moles of nitrogen at equilibrium = 1.5 - 0.45 = 1.05moles of hydrogen at equilibrium = $4.0 - 0.45 \times 3 = 2.65$ moles of product at equilibrium = initial moles + moles formed moles of ammonia at equilibrium = $0 + (0.45 \times 2) = 0.9$ N_2 H_2 NH₃ Finally put concentrations into K_c expression Initial moles 1.5 4.0 0 Equilibrium moles 1.05 2.65 0.9 $K_{\rm c} = \frac{[{\rm NH}_{3~(g)}]^2}{[{\rm N}_2~(g)~][{\rm H}_2~(g)]^3}$ Equilibrium 1.05/1.5 2.65/1.5 0.9/1.5 concentration (M) =0.7 =1.77 =0.6 \geq $K_{\rm c} = \frac{0.6^2}{0.7 \times 1.77^3} = 0.0927 \, {\rm mol}^{-2} \, {\rm dm}^{+6}$ Work out the equilibrium conc = moles/vol (in dm³)concentrations

Practical: Working out equilibrium constant K_{c}

A common experiment is working out the equilibrium constant for an esterification reaction. Ethanol and ethanoic acid are mixed together with a sulfuric acid catalyst.

 $\begin{array}{cccc} \mathsf{CH}_3\mathsf{CO}_2\mathsf{H} + & \mathsf{CH}_3\mathsf{CH}_2\mathsf{O}\mathsf{H} & & & \\ \mathsf{Ethanoic\,acid} & & \mathsf{Ethanol} & & & \\ \mathsf{Ethyl\,Ethanoate} & & \\ \end{array}$

Method

Part 1 Preparing the equilibrium mixture

1 Use burettes to prepare a mixture in boiling tube of carboxylic acid, alcohol, and dilute sulfuric acid. 2 Swirl and bung tube. Leave the mixture to reach equilibrium for one week

Part 2 Titrating the equilibrium mixture

1 Rinse a 250 cm³ volumetric flask with distilled water.

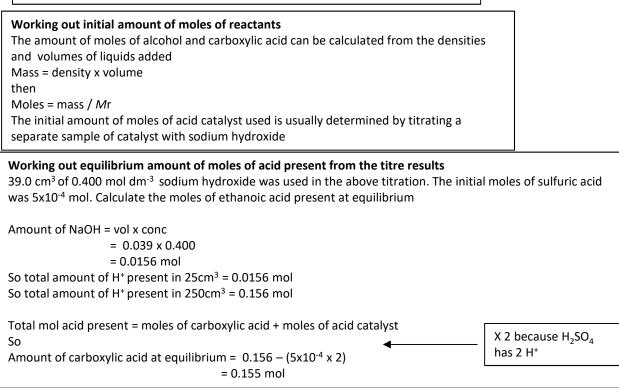
Use a funnel to transfer the contents of the boiling tube into the flask. Rinse the boiling tube with water and add the washings to the volumetric flask.

2 Use distilled water to make up the solution in the volumetric flask to exactly 250 cm³.

Stopper the flask, then invert and shake the contents thoroughly.

3 Use the pipette to transfer 25.0 cm³ of the diluted equilibrium mixture to a 250 cm³ conical flask.

4 Add 3 or 4 drops of phenolphthalein indicator to the conical flask.


5 Set up the burette with sodium hydroxide solution..

6 Add the sodium hydroxide solution from the burette until the mixture in the conical flask just turns pink. Record this burette reading in your table.

7 Repeat the titration until you obtain a minimum of two concordant titres.

The sodium hydroxide will react with the sulfuric acid catalyst and any unreacted carboxylic acid in the equilibrium mixture.

There are many different calculations that can be based on this experiment. Let's look at general stages. Not all calculations will use all the stages.

The pink colour of the phenolphthalein in the titration can fade after the end-point of the titration has been reached because the addition of sodium hydroxide may make the equilibrium shift towards the reactants

Working out equilibrium amount of moles of other substances Calculate the equilibrium amount of ethanol, ethyl ethanoate and water if there were initially 0.400 mol of ethanol and 0.500 mol of ethanoic acid and at equilibrium there were 0.155 mol of ethanoic acid.			
Amount of ethanoic acid that reacted = initial amount – equilibrium amount = $0.5 - 0.155$ = 0.344 mol Amount of ethanol at equilibrium = initial amount - amount that reacted = $0.400 - 0.344$ = 0.056 mol Amount of ethyl ethanoate at equilibrium = initial amount + amount that form = $0 + 0.344$	ned		
= 0.344 mol Amount of water at equilibrium = initial amount + amount that formed = 0 + 0.344 = 0.344 mol	The amount of water at equilibrium would not really be 0 as there would be water present in the acid catalyst		

Calculating the equilibrium constant

Finally calculate the equilibrium constant.

To work out equilibrium concentrations divide the equilibrium amounts by the total volume. Then put in			
$K_{\rm c}$ expression	In order to confirm that one week was sufficient time for		
$K_{c} = [CH_{3}CO_{2}CH_{2}CH_{3}] [H_{2}O]$	equilibrium to be established in the mixture from Part 1, several mixtures could be made and left for different amount of time. If		
[CH ₃ CO ₂ H] [CH ₃ CH ₂ OH]	the resulting $K_{\rm c}$ is the same value then it can be concluded the time is sufficient		

Partial Pressures and K_p

If a reaction contains gases an alternative equilibrium expression can be set up using the partial pressures of the gases instead of concentrations.

Partial Pressure

The partial pressure of a gas in a mixture is the pressure that the gas would have if it alone occupied the volume occupied by the whole mixture.

If a mixture of gases contains 3 different gases then the total pressure will equal the 3 partial pressure added together $P = p_1 + p_2 + p_3$

mole fraction

mole fraction = <u>number of moles of a gas</u> total number of moles of all gases

For a 3 part mixture

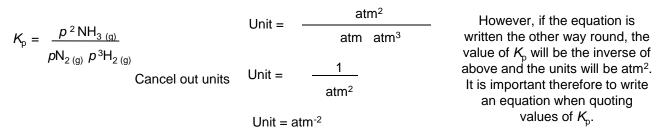
 $\mathbf{x}_{1} = \frac{y_{1}}{y_{1} + y_{2} + y_{3}}$

partial pressure = mole fraction x total pressure of gas 1 of gas 1

 $p_1 = x_1 P$

Example 5 : A mixture contains 0.2 moles N_2 , 0.5 moles O_2 and 1.2 moles of CO_2 . If the total pressure is 3atm. Calculate the partial pressures of the 3 gases.

Total moles of gas = 0.5 + 1.2 + 0.2= 1.9 mole fraction = 0.2/1.9


mole fraction = 0.5/1.9mole fraction = 1.2/1.9of O₂ = 0.263 of N₂ = 0.105 of CO₂ = 0.632Partial pressure = 0.263 x 3 Partial pressure = 0.105x 3 Partial pressure = 0.632 x 3 of O_2 of N₂ = 0.315 = 0.789of CO₂ = 1.896

Writing an expression for K_p

N ₂ (g) + 3	H ₂ (g)	2 NH ₃ (g)	pmeans the partial pressure of that gas
K	p (NH ₃) ²		K_{p} = equilibrium constant
K _p =	$p(N_2) p(H_2)^3$		Only include gases in the K_p expression. Ignore solids, liquids, and aqueous substances.

Working out the unit of Kp

Put the unit of pressure(atm) into the K_p equation

Example 6

For the following equilibrium

 $N_{2}(g) + 3H_{2}(g) = 2 NH_{3}(g)$

1 mole of N_2 and 3 moles of H_2 are added together and the mixture is allowed to reach equilibrium. At equilibrium 20% of the N_2 has reacted. If the total pressure is 2atm what is the value of Kp?

	N ₂	H ₂	NH ₃
Initial moles	1.0	3.0	0
Equilibrium moles	K	1	
	· · · · · · · · · · · · · · · · · · ·	7	

20% of the nitrogen had reacted = $0.2 \times 1.0 = 0.2$ moles reacted. Using the balanced equation 3 x 0.2 moles of H₂ must have reacted and 2x 0.2 moles of NH₃ must have formed

Work out the moles at equilibrium for the reactants and products

moles of reactant at equilibrium = initial moles - moles reacted

moles of nitrogen at equilibrium = 1.0 - 0.2 = 0.8

moles of hydrogen at equilibrium =3.0 - 0.20 x3 = 2.40

moles of product at equilibrium = initial moles + moles formed

moles of ammonia at equilibrium = $0 + (0.2 \times 2) = 0.4$

	N ₂	H ₂	NH ₃	
Initial moles	1.0	3.0	0	Finally put concentrations into K_{p} expression
Equilibrium moles	0.80	2.40	0.40	$K_{\rm p} = \frac{\rho^2 \rm NH_{3 (g)}}{\rho^2 \rm NH_{3 (g)}}$
Mole fractions	0.8/3.6 =0.222	2.40/3.6 =0.667	0.40/3.6 =0.111	$p_{\rm P}^{\rm p} = \frac{1}{p N_{2(g)}} p^3 H_{2(g)}$
Partial pressure	0.222 x2 = 0.444	0.667 x2 =1.33	0.111 x2 = 0.222	$\kappa_{\rm p} = \frac{0.222^2}{0.444 \times 1.33^3} = 0.0469 {\rm atm^{-2}}$

Heterogeneous equilibria for K_p

Kp expressions only contain gaseous substances. Any substance with another state is left out.

$$CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$$

 $K_p = p CO_2$ Unit = atm

Effect of changing conditions on value of K_c or K_p

The larger the Kc the greater the amount of products. If Kc is small we say the equilibrium favours the reactants

Effect of temperature on position of equilibrium and $K_{\rm c}$

 K_c and K_p only change with temperature. It does not change if pressure or concentration is altered. A catalyst also has no effect on K_c or K_p

Both the **position of equilibrium** and the value of K_c or K_p will **change** it temperature is altered In this equilibrium which is exothermic in the forward direction $N_2(g) + 3H_2(g) = 2 NH_3(g)$ If temperature is increased the reaction will shift to oppose the change and

Effect of concentration on position of equilibrium and $K_{\rm c}$

Changing concentration would shift the **position of equilibrium but** the value of **Kc would not change.**

$$H_{2(g)} + CI_{2(g)} = 2HCI_{(g)}$$

Increasing concentration of H₂ would move equilibrium to the right lowering concentration of H₂ and Cl₂ and increasing concentration of HCl. The new concentrations would restore the equilibrium to the same value of K_c .

move in the backwards endothermic direction. The position of equilibrium

shifts left. The value of $K_{\rm c}$ gets smaller as there are fewer products.

Effect of catalysts on position of equilibrium and K_c and K_p

Catalysts have **no effect** on the value of Kc or K_p or the position of equilibrium as they speed up both forward and backward rates by the same amount.

Effect of pressure on position of equilibrium and $K_{\rm c}$

The position of equilibrium will change it pressure is altered but the value of K_c stays constant as K_c only varies with temperature. In this equilibrium which has fewer moles of gas on the product side N₂ (g) + 3H₂ (g) $= 2 \text{ NH}_3$ (g)

If pressure is increased the reaction will shift to oppose the change and move in the forward direction to the side with fewer moles of gas. The position of equilibrium shifts right. The value of K_c stays the same though as only temperature changes the value of K_c .

Increasing pressure does not change K_c . The increased pressure increases concentration terms on bottom of K_c expression more than the top. The system is now no longer in equilibrium so the equilibrium shifts to the right increasing concentrations of products and decreases the concentrations of reactants. The top of the K_c expression therefore increases and the bottom decreases until the original value of K_c is restored.

$$K_{c} = \frac{[NH_{3(g)}]^{2}}{[N_{2}(g)][H_{2}(g)]^{3}}$$

Effect of pressure on position of equilibrium and $K_{\rm p}$

The position of equilibrium will change it pressure is altered but the value of K_p stays constant as Kp only varies with temperature

Increasing pressure does not change K_p . The increased pressure increases the pressure terms on bottom of K_p expression more than the top. The system is now no longer in equilibrium so the equilibrium shifts to the right, increasing mole fractions of products and decreases the mole fractions of reactants. The top of the K_p expression therefore increases and the bottom decreases until the original value of K_p is restored.

$$K_{p} = \frac{p^{2} NH_{3}}{p N_{2} p^{3} H_{2}}$$

$$K_{p} = \frac{x^{2} NH_{3} \cdot P^{2}}{x N_{2} \cdot P x^{3} H_{2} \cdot P^{3}}$$
Where P is total pressure and x mole fraction
$$K_{p} = \frac{x^{2} NH_{3} \cdot P^{2}}{x N_{2} x^{3} H_{2} \cdot P^{4}}$$