Question number	Answer	Marks	Guidance
1 (a)	$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$	B1	
1 (b)	$C_6H_{14}(I) + 9\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 7H_2O(I)$	B1	
1 (c)	$H^{+}(aq) + OH^{-}(aq) \rightarrow H_2O(I)$	B1	
1 (d)	$HBr(g) \rightarrow H(g) + Br(g)$	B1	
2 (a)	standard enthalpy change of formation is the enthalpy change for the formation of 1 mole	B1	
	of a substance from its constituent elements	B1	
	under standard conditions of 100 kPa and 298 K	B1	
2 (b)	$\Delta_r H = [0 + 5 \times -394] - [(-158 + 5 \times -110)]$ = -1262 kJ mol ⁻¹	B1 x 3	
	1 mark for use of 5 twice		
	1 mark for correct subtraction		
	1 mark for correct answer		
3	Σ (Bond enthalpies of reactants) = N \equiv N + 3(H \rightarrow H) = +941 + (3 × +436) = 2249 kJ	B1	
	ΔH^{\ominus} = ∑(Bond enthalpies of reactants) − ∑(Bond enthalpies of products) ∴ −97 = 2249 − 6(N−H)	B1	
	∴ bond enthalpy N–H = (2249 + 97)/6 = 391 kJ mol ⁻¹	B1	
4 (a)	$Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$	B1	
4 (b)	n(Mg) = 0.766/24.3 = 0.0315 mol	B1	
	n(HCI) required = 2 × 0.0315= 0.0630 mol $n(HCI)$ = 1.00 × 100/1000 = 0.100 mol which is greater than 0.0630 and in excess	B1	
4 (c)	$q = mc\Delta T = 100 \times 4.18 \times 22.5$ = 9405 J = 9.405 kJ	B1	
4 (d)	Reaction of 1 mol Mg with 2 mol HCl produces $9.405/0.0315 = 299 \text{ kJ.}$ $\therefore \Delta_r H = -299 \text{ kJ mol}^{-1}$	B1 x 2	
	1 mark for value		
	1 mark for sign		

Question number	Answer	Marks	Guidance
5 (a)	Bond enthalpies involve bond breaking which requires energy	B1	
5 (b) (i)	Σ(Bond enthalpies of reactants) = $4(C-C) + 12(C-H) + 8(O=O)$ = $(4 \times +347) + (12 \times +413) + (8 \times +498) =$ 10 328 kJ	B1	
	Σ (Bond enthalpies of products) = 6(C=O) + 8(O-H) = (10 × +805) + (12 × +464) = 13 618 kJ	B1	
	ΔH^{\ominus} = ∑(Bond enthalpies of reactants) – ∑(Bond enthalpies of products) ∴ 10328 – 13618 = –3290 kJ mol ⁻¹	B1	
5 (b) (ii)	H ₂ O(g) has been formed whereas standard state for H ₂ O is a liquid	B1	
5 (b) (iii)	An average bond enthalpy is calculated using bond enthalpies from different chemical environments, not the actual bond enthalpy of the bond	B1	
6 (a)	The standard enthalpy change of neutralisation is the energy change that accompanies the reaction of an acid by a base to form one mole of H ₂ O(I)	B1	
6 (b)	$H^{+}(aq) + OH^{-}(aq) \rightarrow H_2O(I)$	B1	
6 (c)	Mass of solution = $25.0 + 25.0 = 50.0$ g $q = mc\Delta T = 50 \times 4.18 \times 12.9$ = 2696.1 J = 2.6961 kJ	B1	
	$n(H_2O)$ formed = $n(HCI)$ = 2.00 × 25.0/1000 = 0.0500 mol [1]	B1	
	For 1 mol H ₂ O, energy change = 2.6961/0.0500 = 53.922 kJ. $\therefore \Delta_{\text{neut}} H = -53.9 \text{ kJ mol}^{-1}$	B1 x 2	
	1 mark for value		
	1 mark for sign		
6 (d)	Temperature change is the same as twice the energy is released but it is spread over twice the volume of solution	B1	
	The enthalpy change of neutralisation is the same as this value applied to formation of 1 mol of water. There is double the energy change but also double the amount of water formed	B1	

Question number	Answer	Marks	Guidance
TIGITIDO!			
7 (a)	The enthalpy change from the complete combustion	B1	
	of 1 mole	B1	
	of a substance under standard conditions of 100 kPa and 298 K	B1	
7 (b)	$C_7H_{16}(I) + 11O_2(g) \rightarrow 7CO_2(g) + 8H_2O(I)$	B1 x 2	
	1 mark for species and state symbols		
	1 mark for balanced		
7 (c)	$\Delta_c H = [(7 \times -394) + (8 \times -286)] - [-224 + 0]$ = $-4822 \text{ kJ mol}^{-1}$	B1 x 3	
	1 mark for use of 7 and 8		
	1 mark for correct subtraction		
	1 mark for correct answer		
8 (a)	The enthalpy change from the complete combustion	B1	ALLOW energy change for combustion in excess oxygen OR energy released during complete
	of 1 mole of a substance.	B1	combustion OR energy change for combustion in excess air NOT energy required
			This mark is not stand alone but must relate to statement about an enthalpy change even if the statement was not awarded a mark
8 (b) (i)	$q = mc\Delta T = 250 \times 4.18 \times 54.0$ = 56 430 J = 56.430 kJ	B1	ALLOW 56.43 (kJ) OR 56.4 kJ OR 56 kJ ALLOW -56.43 i.e. ignore sign
8 (b) (ii)	$M(CH_3(CH_2)_4OH) = 88.0 \text{ g mol}^{-1}$	B1	ALLOW 88
	$n(CH_3(CH_2)_4OH) = 1.76/88.0 = 0.0200 \text{ mol}$	B1	ALLOW 0.02 OR ecf from wrong M_r
			ALLOW full marks for 0.02 with no working out
8 (b) (iii)	For 1 mol CH ₃ (CH ₂) ₄ OH, energy change = 1.76/0.0200 = 2821.5 kJ	B1	ALLOW correct substitution into formula(b)(i) ÷ (b)(ii) e.g. 56.4 ÷ 0.02 this is essentially a
	$\therefore \Delta_{c}H = -2820 \text{ kJ mol}^{-1}$	B1 x 2	mark for the working
	1 mark for value		ALLOW ecf from i.e. answer from (b)(i) ÷ (b)(ii)

Question number	Answer	Marks	Guidance
	1 mark for sign		The minus mark is stand alone and is independent of the numerical answer
8 (c) (i)	100 kPa and 298 K	B1	units needed ALLOW 1 bar OR 1 atm OR 760 mmHg ALLOW any stated temperature so for example 100 kPa and 40 °C would be credited with a mark IGNORE any reference to moles or concentration
8 (c) (ii)	$6C(s) + 7H_2(g) \rightarrow C_6H_{14}(I)$	B1	ALLOW graphite / gr
8 (c) (iii)	Carbon reacts with hydrogen to form many different hydrocarbons	B1	ALLOW can form different isomers OR can form different structures IGNORE reaction may be reversible
8 (c) (iv)	$\Delta_{f}H = [(6 \times -394) + (7 \times -286)] - [-4163]$ $= -203 \text{ kJ mol}^{-1}$ 1 mark for use of 6 and 7 1 mark for correct subtraction 1 mark for correct answer	B1 x 3	allow Three marks for –203 on its own with no working out or written on the answer line Allow Two marks for +203,+3483, +1513, +1767 or - 8529 on its own with no working out Allow ONE mark for or –3483, –1513, –1767 or +8529 on its own with no working out units NOT needed Positive sign not needed for endothermic answers