Geo Factsbeet

Hypothesis Tests & Mann-Whitney U-test

Many geography projects involve a hypothesis test. Students often find difficulty in deciding on suitable hypotheses, and accordingly can waste time collecting unhelpful data. This Factsheet explains what is involved in a statistical test of a hypothesis and discusses the role of the null hypothesis and the level of significance. It also covers in detail the calculation and use of the Mann-Whitney U-test, which is applicable to many geographical situations.

Hypotheses

All statistical tests involve testing a *null hypothesis* (H_{a}) against an *alternative hypothesis* (H_{a}) .

The null hypothesis can be described as "the boring case" - i.e. nothing has changed. For example:

- H₀: There is no difference in population age structure between a rural village and the country as a whole
- H_0 : There is no difference in current velocity up and downstream a particular river
- H_0 : There is no correlation between lead levels and distance from the road
- H₀: There is no difference between visitor numbers at two different National Parks

The null hypothesis cannot ever be of the form "something is greater than something else" or "something is related to something else". The exact form of it depends on the test you are using (see Factsheet 73 - Which Stats Test Should I Use?).

The alternative hypothesis is effectively saying the opposite of the null hypothesis - for example, for the last case above the alternative hypothesis would be: H₁: There is a difference between visitor numbers at the two National Parks

When we carry out an investigation, we start off assuming that the null hypothesis is true, and only change our minds if the data obtained in the investigation provides strong enough evidence. This is rather analogous to the situation in a court of law, where the defendant is assumed innocent unless proven guilty!

Obviously there will always be some chance variations - if, for example, the visitor numbers only differed by one person over the course of the year at the two National Parks, we would probably feel - even without conducting any tests! - that this was not a "significant" difference.

The role of the statistical test is to give an objective definition of what constitutes sufficient evidence to reject H_0 .

Choosing Hypotheses

Good hypotheses for a statistical test must:

- be specific, not vague or general
- refer to something that can be measured in an unambiguous way
- be simple, not attempt to include several variables
- include a null hypothesis

Table 1 shows some examples of "bad" hypotheses, and how they can be improved.

Doing the test

Whichever statistical test is used, we will effectively be plugging our data values collected in the experiment into some formula, and coming out with a single number. This number is what we will use to decide whether or not to reject the null hypothesis.

To make that decision, we will have to compare this number we have worked out - which is often called a *test statistic* - to the appropriate statistical table. There are different tables for different statistical tests. Table 2 (overleaf) shows an extract from a statistical table for the Mann-Whitney U-test. Statistical tables give *critical values* at various *significance levels*.

The *significance level* is a measure of how strong we are requiring the evidence to be before we reject H_0 . Common significance levels used are 10% (0.1), 5% (0.05) and 1% (0.01). A 1% significance level, for example, means that we have only a 1% chance of rejecting H_0 when we shouldn't have, whereas a 10% level would give us a 1 in 10 chance of rejecting H_0 when we should have accepted it.

To get an idea of what this means, imagine 100 students carrying out the same investigation into visitor numbers at two National Parks. We will imagine that there is really no significant difference in visitor numbers - in other words, the null hypothesis is true.

Original Hypothesis	What's wrong with it	Improved version				
populations in villages are different to the rest of the country.	Not specific or measurable - which aspect of the population - its age structure, sex structure, occupations?There's no null hypothesis.	 H₀: the population age structure in the village is the same as the national age structure. H₁: the population age structure in the village is not the same as the national age structure. 				
the closer to the road, the higher the pollution.	Not specific - what sort of pollution?How will it be measured?There's no null hypothesis.	 H₀: there is no correlation between lead levels and distance from the road. H₁: there is some correlation between lead levels and distance from the road. 				
slope affects vegetation.	 Not specific - which aspect of the slope is referred to? Is it the gradient, the altitude or the length of the slope? Not measurable - you cannot just measure "vegetation". Should it be species diversity, or percentage cover, or biomass, or incidence of a particular species? There's no null hypothesis. 	 H₀: the gradient of the slope has no effect on percentage cover. H₁: the gradient of the slope has some effect on percentage cover. 				

Table 1. Choosing a hypothesis

		ze - has its own critical value. Critical me from books of statistical tables.			Table 2. Critical values for the U-test					
ey all carry out their statistical test at a 5%			n ₁ (x	n ₂ 5	6	7	8		
	or the Mann-Whitn	-Whitney U-test, we reject H _o if		~	4	5	6	8		
would find themselves rejecting the null our value is hypothesis, because they happened to get "odd" Mann-Whit		s smaller. For every test <u>except</u> ney, we reject H ₀ if our value is			-		5			
					2	3	5	6		
	gger than the critical (tables) value.								.0	
				5%	-	5	6	8		
compare with the number we have worked out - vary with sample		g the way that the critical values e size; with a large sample, it is		0%	-	-	11	13		
				5%	-		8	8 10		
e test statistic - to decide whether or not we m	uch easier to get a sig	gnificant result!	8 1	0%	-	-	-	15		
$ould reject H_{o}$. Each significance level - and each			-	5%	-	-	-	13		
Mann-Whitney U-test										
We use the U-test to compare the average of two sets	s of data - e.g. the spe	cies diversity on a path and	off a path			LOS				
We are just trying to find out whether there is a diff					ipson's					
	is no difference bet		21.015109		ulated us				a	
	is a difference betw			Div	ersity =					
(If you wish to be mathematically correct, you wou			nedian)		-		n(n-			
We will reject the null hypothesis if the value we c					re n refe					
tables (the <i>critical value</i>).	actuate (the lest stat	usue) is Delow the value in	Jill ule		vidualsof					
	strated by applying :	t to data on spacios diversi	ty on		N is the	he t	otal	num	ber of	
The procedure for carrying out the test will be illu	suated by applying 1	t to data on species diversi	ty OII	indi	viduals.					
and off a path.				L						
METHOD	A	PPLICATION								
1. Write down your hypotheses	H	I ₀ : There is no differenc	e in spec	ies div	versity o	n an	d of	ff the	path	
	H	I ₁ : There is a difference	in specie	s dive	rsity on	and	l off	the p	ath	
		-								
2. Obtain data about the things you wish to compa two sets of data Each set of data must contain at least 5 values, bu have to have the same number of values as each ot	t they don't o	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88	4 3.47 4.	path s 5 33 2	sites and 6 7 .20 2.5	60	f-pat 8 3.33 10.0	3	s are:	
two sets of dataEach set of data must contain at least 5 values, but have to have the same number of values as each ot3. Consider one set of data at a time - say we start	t they don't o her. o	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi	4 3.47 4. 10.50 3	path s 5 33 2 .50 5	sites and 6 7 .20 2.5 .14 4.4	50 50	8 3.33 10.0	3 00	s are:	
two sets of data Each set of data must contain at least 5 values, bu have to have the same number of values as each ot 3. Consider one set of data at a time - say we start path sites.	t they don't o her. o t with the on- S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8.	4 3.47 4. 10.50 3 ng off-pat	path s 5 33 2 .50 5	sites and 6 7 .20 2.5 .14 4.4	50 50	8 3.33 10.0	3 00	s are:	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each ot 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path sites 	t they don't o her. o t with the on- S ite.	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8	4 3.47 4. 10.50 3 ng off-pat	path s 5 33 2 .50 5 .h sites	sites and 6 7 .20 2.5 .14 4.4 s have hig	gher	8 3.33 10.0	3 00	s are:	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each ot 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 	t they don't o her. o t with the on- S ite. S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p	4 3.47 4. 10.50 3 ng off-pat	path s 5 33 2 .50 5 th sites the sc	sites and 6 7 .20 2.5 .14 4.4 s have hig	60 60 gher	8 3.3: 10.0 valu	3 00 1es:	s are:	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 	t they don't o her. o t with the on- S ite. S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3	4 3.47 4. 10.50 3 ng off-pat	path s 5 33 2 .50 5 .h sites	sites and 6 7 .20 2.5 .14 4.4 s have hig ores are: 6	gher	8 3.3 10.0 valu	3 00	s are:	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 	t they don't o her. o t with the on- S ite. S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2	4 3.47 4. 10.50 3 ng off-pat path sites, 4 7	path s 5 33 2 .50 5 	sites and 6 7 .20 2.5 .14 4.4 s have hig	60 60 gher 7	8 3.3 10.0 valu	3 00 1es: 8	s are:	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 	t they don't o her. o t with the on- S ite. S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3	4 3.47 4. 10.50 3 ng off-pat path sites, 4 7	path s 5 33 2 .50 5 	sites and 6 7 .20 2.5 .14 4.4 s have hig ores are: 6	60 60 gher 7	8 3.3 10.0 valu	3 00 1es: 8	s are:	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: for every off-path site that has a higher value for every off path site that has an equal value. Sum the scores of the on-path sites. This gives overall on-path score Repeat steps 3) and 4) for off-path sites. This to the score set of the steps and the steps an	t they don't or her. or twith the on- State Stat	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for	4 3.47 4. 10.50 3 ng off-path path sites, 4 7 47	path s 5 33 2 .50 5 .h sites the sc 5 4 sites:	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8	50 20 gher 7 8	8 3.3: 10.0 valu	3 00 tes: 8 7		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or solution. 	t they don't or her. or twith the on- State Stat	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow	4 3.47 4. 10.50 3 ng off-path path sites, 4 7 47	path s 5 33 2 .50 5 .h sites the sc 5 4 sites:	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8	50 20 gher 7 8	8 3.3: 10.0 valu	3 00 tes: 8 7		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: for every off-path site that has a higher value for every off path site that has an equal value. Sum the scores of the on-path sites. This gives overall on-path score Repeat steps 3) and 4) for off-path sites. This to the score set of the steps and the steps an	t they don't or her. or twith the on- State Stat	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3	4 3.47 4. 10.50 3 ng off-pat path sites, 4 7 4 7 6 47	path s 5 33 2 .50 5 .h sites the sc 5 4 sites: th site	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 8	50 20 gher 7 8	8 3.3: 10.0 valu	3 00 tes: 8 7		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or solution. 	t they don't or her. or twith the on- S ite. S S you the S ime, you will V r S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off-p	4 3.47 4. 10.50 3 ng off-pat eath sites, 4 7 4 7 off-path ing on-pat path sites	path s 5 33 2 .50 5 th sites the sc 5 4 sites: th site the sc	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have high ores are	i0 .0 gher 7 8 igher	8 3.33 10.0 valu	3 00 ues: 8 7 uues: 2		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or solution. 	t they don't or her. or twith the on- S ite. S S you the S ime, you will V r S S S S S S S S S S S S S S S S S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 to the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off-j ite 1 2 3	4 3.47 4. 10.50 3 ng off-pat eath sites, 4 7 4 7 4 7 4 7 4 7 4 7 5 47	path s 5 33 2 .50 5 .h sites the sc 5 4 sites: th site the sc 5	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have hi ores are 6 8	50 -0 gher 7 8 igher 7 7	8 3.33 10.0 valu	3 00 ues: 8 7 uues: 2 8		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or 	t they don't or her. or twith the on- S ite. S S you the S ime, you will V r S S S S S S S S S S S S S S S S S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off-p ite 1 2 3 core 3 5 3	4 3.47 4. 10.50 3 ing off-path path sites, 4 7 4 4 7 4 4 7 4 7 4 7 4 7 5 4 7 5 4 7 5 6 4 7 5 6 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	path s 5 33 2 .50 5 th sites the sc 5 4 sites: th site the sc	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have high ores are	i0 .0 gher 7 8 igher	8 3.33 10.0 valu	3 00 ues: 8 7 uues: 2		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or solution. 	t they don't or her. or twith the on- S ite. S S you the S ime, you will V r S S S S S S S S S S S S S S S S S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 to the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off-j ite 1 2 3	4 3.47 4. 10.50 3 ing off-path path sites, 4 7 4 4 7 4 4 7 4 7 4 7 4 7 5 4 7 5 4 7 5 6 4 7 5 6 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	path s 5 33 2 .50 5 .h sites the sc 5 4 sites: th site the sc 5	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have hi ores are 6 8	50 -0 gher 7 8 igher 7 7	8 3.33 10.0 valu	3 00 ues: 8 7 uues: 2 8		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or solution. 	t they don't or her. or twith the on- S ite. S S you the S ime, you will V r S S S S S S S S S S S S S S S S S S	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off-p ite 1 2 3 core 3 5 3	4 3.47 4. 10.50 3 ing off-path path sites, 4 7 4 4 7 4 4 7 4 7 4 7 4 7 5 4 7 5 4 7 5 6 4 7 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	path s 5 33 2 .50 5 .h sites the sc 5 4 sites: th site the sc 5	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have hi ores are 6 8	50 -0 gher 7 8 igher 7 7	8 3.33 10.0 valu	3 00 ues: 8 7 uues: 2 8		
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: for every off-path site that has a higher value for every off path site that has an equal value. Sum the scores of the on-path sites. This gives overall on-path score Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher or equal scores. 	t they don't or her. or t with the on- s t with the on- s tet. s s s s s s s s s s s s s s s s s s s	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off- ite 1 2 3 core 3 5 3 o the total off-path score i o the U-value is 17 The critical value for two sa	4 3.47 4. 10.50 3 ing off-path oath sites, 4 7 a 47 a 47 a 47 a 5 a 4 a 5 a 5 a 5 a 5 a 5 a 5 a 5 a 5	path s 5 33 2 .50 5 th sites the sc 5 4 sites: th site the sc 5 3 8 is 13	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have high ores are: 6 1 ores are: 6 8	60 60 gher 7 8 igher 7 2 % lev	8 3.3: 10.0 valu valu	3 00 ues: 7 ues: 2 8 0 f sign	,3,5	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: for every off-path site that has a higher value for every off path site that has an equal value. Sum the scores of the on-path sites. This gives overall on-path score Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher o equal scores. 	t they don't or her. or twith the on- solution it is solution of the solution	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off- ite 1 2 3 core 3 5 3 o the total off-path score i o the U-value is 17	4 3.47 4. 10.50 3 ing off-path oath sites, 4 7 a 47 a 47 a 47 a 5 a 4 a 5 a 5 a 5 a 5 a 5 a 5 a 5 a 5	path s 5 33 2 .50 5 th sites the sc 5 4 sites: th site the sc 5 3 8 is 13	sites and 6 7 .20 2.5 .14 4.4 s have high ores are: 6 8 s have high ores are: 6 1 ores are: 6 8	60 60 gher 7 8 igher 7 2 % lev	8 3.3: 10.0 valu valu	3 00 ues: 7 ues: 2 8 0 f sign	,3,5	
 two sets of data Each set of data must contain at least 5 values, but have to have the same number of values as each of 3. Consider one set of data at a time - say we start path sites. We now must calculate a score for each on-path site A site is given: 1 for every off-path site that has a higher value 0.5 for every off path site that has an equal value. 4. Sum the scores of the on-path sites. This gives overall on-path score 5. Repeat steps 3) and 4) for off-path sites. This t be awarding points for on-path sites with higher o equal scores. 6. Take the smaller of the two scores. This is the U 7. Compare your calculated U-value with the critical starts and the score is the start of the two scores. 	t they don't or her. or twith the on- so twith the on- so twith the on- so the so the solution of the solution	The figures for species dive ite 1 2 3 n-path 2.20 4.65 6.00 ff-path 4.09 2.93 3.88 ite 1, on-path: The followi 1,2,3,4,5,6,7,8. Hence the score is 8 imilarly, for the other on-p ite 1 2 3 core 8 3 2 o the total on-path score is We now find the scores for ite 1, off-path : The follow lence the score is 3 imilarly, for the other off- ite 1 2 3 core 3 5 3 o the total off-path score i o the U-value is 17 The critical value for two sa	4 3.47 4. 10.50 3 mg off-path wath sites, 4 7 47 47 47 47 647 off-path sites 4 0 s 17 . mples of cept H ₀ an	path s 5 33 2 .50 5 th sites the sc 5 4 sites: th site the sc 5 3 8 is 13 nd con	sites and 6 7 .20 2.5 .14 4.4 .14 4.4 .1	50 60 gher 7 8 1 1 1 8 7 2 % lev 8 % lev	8 3.3: 10.0 valu valu	3 00 ues: 7 ues: 2 8 0 f sign	,3,5	

• Measure the CO levels at 20 road intersections, which all have an equal volume of traffic, but half the intersections have traffic lights and half do not. Test whether or not the CO levels are significantly different.

Measure the percentage vegetation cover at at least 5 sites on each of two slopes. Test whether or not there is a difference in % cover.
Ask two groups of ten people - for example local residents and tourists - to award a score from 0 to 50 to indicate how favourably they view a planned change in the area (e.g. the New Forest becoming a National Park). Test whether or not there is a difference in opinion.

a plained enange in the aca (e.g. the flow forest becoming a flatonia flatk). Fost whether of not alore is a difference in opinion.

Acknowledgements; This Factsheet was researched and written by Cath Brown. GeoPress Factsheets may be copied free of charge by teaching staff or students, provided that their school is a registered subscriber. No part of these Factsheets may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any other means, without the prior permission of the publisher. ISSN 1351-5136

2