Question number	Answer	Marks	Guidance
1 (a) (i)	$Mg^{2+}(g) \to Mg^{3+}(g) + e^{-}$	B1	
1 (a) (ii)	2p	B1	
1 (b)	There is a large increase between 5th and 6th ionisation energies,	B1	
	marking electron loss from the next closest shell.	B1	
	The element must have 5 electrons in its outer shell - Element is P	B1	
1 (c)	5th ionisation energy as the 5th electron is being removed	B1	
2 (a)	Na Mg Al	B1	
2 (b)	Al Si P	B1	
2 (c)	Si P S	B1	
2 (d)	Na Mg Al: giant metallic lattice	B1	
	P, S, Cl: simple molecular lattice	B1	
3 (a)	Graphite has a giant covalent lattice and iodine has a simple molecular lattice	B1	
	On melting, covalent bonds are broken in graphite	B1	
	London forces are broken between iodine molecules	B1	
	Covalent bonds are much stronger	B1	
	Covalent bonds require more energy input to break and graphite has a much higher melting point	В0	
3 (b)	Graphite contains delocalised electrons between its layers	B1	
	The delocalised electrons can move allowing graphite to conduct	B1	
	lodine can no mobile charge carriers and cannot conduct	B1	
4 (a)	The energy required to remove one electron	B1	
	from each atom in one mole	B1	
	of gaseous atoms	B1	

4 (b)	Across Period 3, nuclear charge increases	B1
	Electrons are added to the same shell	B1
	and attraction between nucleus and outer electrons increases	B1
4 (c)	In B, electron is removed from a 2p orbital rather than 2s orbital in Be. The 2p sub-shell is at higher energy and its electron is easier to remove	B2
4 (d)	In O, one of the 2p orbitals contains paired electrons whereas in N, all three orbitals are singly occupied	B1
	The paired electrons in O repel and electron is easier to remove	B1
4 (e)	Down a group, electrons are added to a new shell, further from the nucleus	B1
	There are more inner shells between the outer electrons and the nucleus, increasing the shielding	B1
	Attraction between nucleus and outer electrons decreases	B1
4 (f) (i)	$N^{3+}(g) \to N^{4+}(g) + e^-$	B1
4 (f) (ii)	As each electron is removed the remaining electrons are attracted more to the nucleus	B1
5 (a) (i)	$O^+(g) \to O^{2+}(g) + e^-$	B2
5 (a) (ii)	Large difference between 6th and 7th ionisation energies	B1
	marks a different shell closer to nucleus	B1
5 (b) (i)	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	B1
5 (b) (ii)	1 mark for sharp rise between ionisation 3 and ionisation 4	B1 x 3
	1 mark for sharp rise between ionisation 11 and ionisation 12	
	1 mark for increase for all ionisation energies	

6 (a)	Giant metallic lattice has mobile electrons.	B1	IGNORE 'free electrons' for
0 (a)	Giant metallic lattice has mobile electrons.	ы	'mobile electrons'
	The giant ionic lattice has no mobile ions as all ions are fixed in position.	B1	DO NOT ALLOW references to incorrect bonding
	When molten, the ionic lattice collapses and the ions are now able to move and conduct electricity	B1	ALLOW 'ions are fixed in place' IGNORE 'no mobile electrons' for solid ionic IGNORE 'no mobile charge carriers' for solid ionic IGNORE 'delocalised ions' OR 'free ions' for 'mobile ions' DO NOT ALLOW any mention of electrons moving IGNORE 'aqueous ionic compounds have mobile ions'
6 (b) (i)	8+ 8+ 8+ 8+ 8+ 8+ 8+ 8+ 8+ 8+ 8+ 8+ 8+ 8	B1 x 2	There must be 3H atoms bonded to one N atom DO NOT ALLOW any Hδ-OR Nδ+ ALLOW 2-D NH ₃ molecules IGNORE lone pair(s) for first marking point All H-bonds drawn must hit the lone pair H-bond does not need to be labelled but must be different from covalent bond DO NOT ALLOW more than one lone pair on N for second marking point ALLOW a pair of molecules with two 'correct' hydrogen bonds forming a 'dimer'
6 (b) (ii)	A H ₂ O can form more H-bonds per molecule because O has two lone pairs in H ₂ O against one lone pair for N in NH ₃ . O is more electronegative that N and will attract more making stronger hydrogen bon	B1	ALLOW 'more' for 'stronger' OR Ice has twice as many hydrogen bonds as ammonia ALLOW ice has stronger intermolecular forces than ammonia OR bigger permanent dipole than ammonia DO NOT ALLOW comparisons between different types of force DO NOT ALLOW reference to van der Waals' IGNORE 'more energy needed'

										ALLOW O has more lone pairs
6 (c)	SiO ₂ has a giant covalent lattice structure. SiCl ₄ has a simple molecular lattice structure. For melting, strong covalent bonds are broken in SiO ₂ . Weak London forces are broken in SiCl ₄ More energy is required to break stronger forces in SiO ₂ than SiCl ₄									ALLOW macromolecular OR giant atomic ALLOW SiO2 is a 'giant structure with covalent bonds' ALLOW even if reference to 'covalent' only appears later in answer. DO NOT ALLOW any reference to 'ionic' OR 'intermolecular' OR 'metallic' Quality of Written Communication - Covalent OR macromolecular OR atomic spelt correctly ONCE and used in context of the first marking point ALLOW simple covalent DO NOT ALLOW any reference to 'giant' OR 'ionic' OR 'metallic' If neither of the 1st 2 marks have been awarded, ALLOW 1 mark for SiO2 is giant AND SiCl4 is simple OR molecular ALLOW induced dipoles DO NOT ALLOW permanent dipoles ALLOW alternative words to broken e.g. overcome ALLOW incorrect forces in SiCl4 OR SiO2 for this mark
7 (a) (i)		Na	Mg	Al	Si	Р	S	CI	B1 x 3	
	melting point	98	639	660	1410	44	113	-101		
	structure	М	М	М	С	S	S	S		
	bonds/forces broken on boiling	MB	MB	MB	СВ	LF	LF	LF		
	1 mark for ea	ch cor	rect ty	pe, M						

7 (a) (ii)		Na	Mg	Al	Si	Р	S	CI	B1		
	melting point /°C	98	639	660	1410	44	113	-101			
	structure	М	М	М	С	S	S	S			
	bonds/forces broken on boiling	MB	MB	MB	СВ	LF	LF	LF			
	1 mark only fo	or all c	correct	(final	row)						
7 (b)	Attraction bet electrons	ween	positiv	e ions	and d	leloca	lised		B1		
	e-+		B1								
	+ = positive	e ion									
7 (c)	The number of charge increases		calise	d elec	trons a	and the	e ionic		B1		
	The attraction increases, making the metallic bonding stronger which requires more energy to break										
7 (d)	For melting weak London forces are broken between P ₄ molecules							B1			
	In silicon, strong covalent bonds are broken							B1			
	Much more energy is required to break stronger forces							rces	B1		
7 (e)	Sulfur exists as S ₈ and chlorine as Cl ₂ molecules.								B1		
	London forces are stronger between S ₈ molecules as they have more electrons than Cl ₂ molecules										
8 (a) (i)	Sodium: giant metallic lattice								B1		
	containing positive Na ⁺ ions and delocalised electrons								B1		
8 (a) (ii)	Sodium chloride: giant ionic lattice							B1			
	containing oppositely charged Na ⁺ and Cl [−] ions							B1			
8 (a) (iii)	Chlorine: Simple molecular lattice						B1				
	containing Cl ₂ molecules							B1			
	I								1		

8 (b)	Sodium has mobile electrons which conduct.	B1	
	Sodium chloride has no mobile ions as all ions are fixed in position.	B1	
	Chlorine cannot conduct as there are no charged particles in the structure	B1	
8 (c)	When molten, the ionic lattice in NaCl collapses and the ions are now able to move and conduct electricity	B1	