

Question number	Answer	Marks	Guidance
1 (a)	Li ⁺ and P ³⁻ , Li ₃ P	B1	
1 (b)	Li ⁺ and PO ₄ ³⁻ , Li ₃ PO ₄	B1	
1 (c)	Cr ³⁺ and OH [⁻] , Cr(OH) ₃	B1	
1 (d)	Fe ³⁺ and Se ²⁻ , Fe ₂ Se ₃	B1	
1 (e)	Ti ³⁺ and N ³⁻ , TiN	B1	
1 (f)	Ba ²⁺ and SO ₄ ²⁻ , BaSO ₄	B1	
1 (g)	Ba ²⁺ and SO ₃ ²⁻ , BaSO ₃	B1	
1 (h)	Ni ²⁺ and MnO ₄ ⁻ , Ni(MnO ₄) ₂	B1	
2 (a)	Orbital is a region around the nucleus that can hold up to two electrons, with opposite spins	B1	
2 (b) (i)	2	B1	
2 (b) (ii)	10	B1	
2 (b) (iii)	32	B1	
2 (c) (i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	B1	
2 (c) (ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	B1	
2 (d) (i)	Arrows correct	B1	energy 2s 1 2p 1 1
2 (d) (ii)	2s and 2p labels	B1	energy 2s 1 2p 1 1

Question number	Answer	Marks	Guidance
2 (e) (i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶	B1	
2 (e) (ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	B1	
2 (f) (i)	2	B1	
2 (f) (ii)	14	B1	
2 (f) (iii)	3	B1	
3 (a)	Electrostatic attraction between oppositely charged ions	B1	
3 (b)	1 mark for Dot and cross 1 mark for lonic charges	B1 x 2	
3 (c) (i)	giant ionic lattice	B1	
3 (c) (ii)	1 mark for K and CI shown as ions: K ⁺ and CI	B1 x 2	
3 (d)	In the solid state, the ions cannot move as they are fixed in a giant ionic lattice structure In solution, ions are free to move and carry charge	B1	
3 (e)	As ionic charge increases, melting point increases.	B1	

0 1:	A	N/1 l	0
Question number	Answer	Marks	Guidance
	The greater the ionic charge, the greater the attraction between ions	B1	
	and the more energy required to break the ionic bonds	B1	
4 (a)	F P F	B1	
4 (b) (i)	A dative covalent bond is a shared pair of electrons where both electrons are from the same atom	B1	
4 (b) (ii)	1 mark for dot and cross for B and 3Fs correct 1 mark for dot and cross around N correct including dative covalent bond	B1 x 2	
4 (c) (i)		B1	
4 (c) (ii)	1 mark for dot and cross around N atom 1 mark for dot and cross around N correct including one extra electron	B1 x 2	

Question number	Answer	Marks	Guidance
4 (d)	NH ₄ ⁺	B1	
	NO ₃	B1	
5 (a)	$\left[\begin{array}{c} Mg \end{array}\right]^{2+} \left[\begin{array}{c} O \end{array}\right]^{2-}$	B1 x 2	
	mark for Dot and cross mark for Ionic charges		
5 (b)	Magnesium oxide has a giant ionic lattice	B1	
	Strong bonding between 2+ and 2- ions	B1	
	A large amount of energy is needed to break ionic bonding	B1	
5 (c) (i)	In the solid state, the ions cannot move as they are fixed in a giant ionic lattice structure	B1	
	In solution, ions are free to move and carry charge	B1	
5 (c) (ii)	$\begin{array}{l} MgO(s) + 2HNO_3(aq) \to Mg(NO_3)_2(aq) + \\ H_2O(I) \end{array}$	B2	
5 (c) (iii)	Mg ²⁺	B1	
	NO ₃ ⁻	B1	
6 (a)	o co	B1	
6 (b) (i)	2 lone pairs, 1 dative covalent bond	B1	
6 (b) (ii)	A covalent bond is the strong electrostatic attraction between a shared pair of electrons and the nuclei of the bonded atoms	B1	
6 (b) (iii)	A dative covalent bond is a shared pair of electrons where both electrons are from the same atom	B1	

Question number	Answer	Marks	Guidance
6 (c)	H C H	B1	
6 (d) (i)	coo	B1	
6 (d) (ii)	There are only 6 electrons surrounding the carbon atom	B1	
6 (e) (i)	* C N	B1	
6 (e) (ii)	CO and CN ⁻ have the same number of electrons	B1	
6 (f)	1 mark for dot and cross around C atom 1 mark for dot and cross around Os correct including 2 extra electron	B1 x 2	