

www.curriculumpress.co.uk

Number 146

DEPRESSIONS

Introduction

Depressions are low pressure systems. In mid latitudes such as the UK they occur when pronounced Rossby waves lead to a strong jet stream in the troposphere. The strong jet generates marked activity along the polar front. Depressions begin to form when a tropical air mass meets a polar air mass, to form a vortex of anticlockwise swirling air.

Fact Box

- Every year on average, mid latitude areas such as the UK experience about 50-60 depressions.
- For 15-20% of the year the cyclonic weather type prevails (one of Lamb's seven weather types).
- On average each depression lasts from 3-5 days from formation to occlusion and decay (life cycle).
- The combination of changes over time combined with rapid movement leads to a pattern of rapidly changing weather, which nevertheless follows a discernible sequence.

Both the development and movement of low pressure systems are controlled by the polar front jet stream. The rate the air is sucked upwards (Fig. 1) determines how low the surface pressure is (a very marked low produces a very deep depression with tightly packed isobars and very strong winds). The speed of the jet stream within the upper air westerlies determines the rate of movement (passage) of the depression.

Development

Fig. 2 shows the pattern of development, maturation and decay of the system (the depression and its associated front) known as a life cycle. The stage the depression is at when it passes will clearly influence the nature of its impact. Further variation is provided by the nature, type and temperature differences between the converging air masses which form the system.

Fig. 2 The pattern of development of a depression.

Fig. 3 shows an annotated synoptic chart to identify the main features of a depression.

Fig. 3 Annotated synoptic chart.

A synoptic chart is a general survey of weather over an area at a particular time. Coded symbols are printed on a chart using data from a number of observation points. The charts show temperature, wind direction and speed, total amount of cloud, and precipitation. In an A-level question you may be asked to use them in the following ways: to describe air pressure; to detail weather conditions at a specific place; to show weather conditions at a certain time of day; to forecast future weather.

The Weather Sec				www.curriculumpress.co.uk				
The Weather Sequence associated with depressions Fig. 4 summarises the impact the passage of a depression can make on the sequence of weather. Exam Hint: Fig. 4 is a very useful one to learn. You can explain the sequence beginning with the approach.								
Fig. 4 The impact of the passage of a depression.								
Cold sector	Cold front 50 - 100km	Warm sector Variable width	Warm front 200 - 400km					
- 12 000	Warm Tm or Tc air forced to rise steeply	Tropopause	Cloud codes:CiCirrusCu CumulusCcCirrocumulusCb CumulonCsCirrostratusAc Altocumu	As Altostratus imbus St Stratus ilus Ns Nimbostratus				
Cb Anvils Upper air wester Towering clouds Cu As Ac Cu air unagede		lies (jet) Warm Tm air forced to rise gently (lighter, damper) Ci						
Cold Pm or A air heavy, dense etc.								
Cold Sector	Cold front	Warm sector	Warm front	The Approach				
Rise in pressure continues but steadies out	Sudden rise in pressure	Steady low pressure	Fall of pressure slows down and ceases in time	Steady fall of pressure				
NW winds	Wind veers again SSW-NW	SW/S	Wind veers from SSE-SW	Likely to be SSE/SE winds				
Squally, speed of wind slowly decreases (force 3-6).	Very strong gusting winds, strong to gale force (force 6-8).	Decreases (e.g. force 2-4)	Strong (e.g. force 4-5)	Slowly increasing in strength (force 1-3 common)				
Cold 3-4°C (W) Cool 12-13°C (S)	Sudden decrease of 4-5°C	Warm mild 10-11°C (W) Warm/hot 19-20°C (S)	Sudden rise in °C 10-11°C winter 19-20°C summer	Relatively cool in winter 6°C around 15-16°C summer				
Rapid fall in humidity	High humidity until precipitation	Still high relative humidity – drizzle	High during precipitation	Slowly rising relative humidity				
Decreasing cloud, fair weather cumulus	Often towering cumulo-nimbus	Low stratus clouds may clear a little	Low thick nimbostratus cloud	Clouds initially high and thin. Hooked cirrus in upper air show first sign of disturbance				
Heavy showers but sunny intervals	Short period of heavy rain, then showers of hail, sleet, snow in W	Drizzle. May clear a little	Continuous rainfall for several hours, steady and quite heavy	No precipitation				
Very good visibility except in showers	Poor visibility but improving	Poor visibility	Rapid decrease in visibility	Visibility good initially, but decreasing as cloud base lowers				
Wind begins to decrease	Increasing wind strength		Increasing surface wind strength					
◀	Increasing cloud cover, and humidity							
Rising pressure Decreasing pressure								

The impact of depressions

Whilst in general the rapidly changing weather associated with depressions can be seen as a bonus – the equable climate with abundant well distributed rainfall, and the rapidly moving air leads to an absence of severe fogs occasionally depressions can lead to very severe weather events.

- The most common hazardous impact is extremely high **winds** and **gales**, for instance in the 1987 great storm or hurricane or the deep depression which led to the Burns' day storm in January 1990. The strong winds are caused by the very steep pressure gradient which is brought about by extreme contrasts in temperature between the converging polar and tropical air masses. Gales have a huge impact on infrastructure such as power/transport. October 2002 was the latest example.
- Coastal floods (East Anglia 1953 and Towyn, February 1990) result from on-shore gale force winds drawn towards a deep depression, which itself leads to a storm surge developing as water is 'sucked up'. When this is combined with high spring tides, huge breakers are driven downwards, breaking sea defences and causing serious localised flooding.
- Violent thunderstorms can be associated with violent uplift at the cold front which leads to the development of towering cumulo-nimbus clouds. Cold N Westerly or Northerly air (pM or A) wedges underneath very warm air. Occasionally violent hailstorms occur as in London in 1968 when hail the size of tennis balls fell, formed by the strong power of the updraughts and downdraughts in the storm clouds.
- Depressions which remain static (usually controlled by Rossby wave patterns) can cause extremely **heavy rainfal**l, as the warm air within them (mT air mass) can hold very large quantities of moisture. As in 1952 Lynton/Lynmouth where between 50 and 100mm fell in a 24 hour period, this can lead to localised flooding. Alternatively, a succession of depressions can lead to very high levels of antecedent moisture in the ground, so even modest rainfall leads to flooding (Midlands April 1998, November 2000) January 2003.
- Snow, especially in areas of high altitude, can result from a number of circumstances when the land surface has become very cold after a blocking winter anticyclone. When warm Atlantic air finally comes via a depression, as it is forced to rise precipitation is initially in the form of snow (e.g. the South West Blizzard in February 1978 which led to between 100 and 200mm of snow) or sometimes a deep depression draws in very cold Arctic and polar air as it tracks northwards, which can lead to very heavy snow falls (for example in March 1993 the American Storm of the century occurred in this way with huge falls of snow).

Further research

Nagle, G. Climate & Society. Hodder. Access Series McNaught, A. Weather & Climate. Hodder. On line resources on Weather & Climate

Useful websites

www.bbc.co.uk/weather BBC Weather Centre provides a wide range of live weather satellite images

www.royal-met-soc.org UK/met international

www.atschool.eduweb.co.uk met link or www.witu.rdg.ac.uk/rms/rms are ways of Reaching Royal Met Society who publish weather

<u>www.nelsonthornes.com</u> monthly update of weather news and hazards <u>www.meto.gov.uk</u> Meteorological Office Education Services, Bracknell <u>www.metoffice.gov.uk/index-html</u> - a dial up weather info service with data on 300 weather stations

www.met-office.gov.uk/education/historic - provides historic records for example of extreme weather

<u>www.nottingham.ac.uk/meteosat</u> an excellent source of Meteosat data <u>www.sat.dundee.ac.uk</u> register free - excellent source of images from NOAA satellites

Exam Question

Fig. 5 shows the sequence of weather experienced with the passage of a depression.

- (a) Make a copy of the diagram and mark on the position of the warm front, warm sector and cold front. (3 marks)
- (b) Justify your choice using evidence from the date shown. (9 marks)
 - (c) Choose two further measurements you might make and explain how they would confirm your choice. (8 marks)

Exam Hint: Remember although the depression will be moving W-E, the graphs show a time sequence of weather recordings at a particular weather station.

Suggested answer framework

(a) Warm front – somewhere between midnight and 6.00am Warm sector – 6.00am – 12.00pm Cold front – probably around 1.00pm – 4.00pm

(b) Evidence **Temperatures**, cloud pattern: cirrus, mackerel sky etc for approach of warm front (disturbed air) stratus cloud for warm sector, clearing clouds cumulus for cold front, towering an actual front.

Wind speed always gustiest at fronts. The **barometer** pressure reading shows the centre of the low passed over just after 6am.

Note: This type of question will usually be marked in 3 levels for highest (level 3) you need detailed evidence and explanation to show your own knowledge of a depression.

(c) Further measurements include wind direction - winds veer round from SE → S → SW → NW as the depression passes. Now weather is also very useful for instance continuous rainfall is associated with warm front, drizzle with warm sector and heavy shows with passage of cold front.

Acknowledgements

This Factsheet was written by Sue Warn who works as a Chief Examiner and freelance geography consultant.

Curriculum Press. Unit 305B, The Big Peg, 120 Vyse Street, Birmingham B18 6NF

Geopress Factsheets may be copied free of charge by teaching staff or students, provided that their school is a registered subscriber. No part of these Factsheets may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any other means, without the prior permission of the publisher. **ISSN 1351-5136**