14 Alcohols Answers to practice questions

OCR Chemistry A

Question	Answer	Marks Guidance
number		
1 (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 x 4
	1 mark for each alcohol with all details	
1 (b)	2-methylpropan-2-ol does not react	B1
2 (a)	OH hexan-1-ol	B1 x 2
	1 mark for name	
	1 mark for formula	
2 (b)	OH 2-methylbutan-1-ol 1 mark for name 1 mark for formula	B1 x 2
2 (c)	OH 3-methylheptan-2-ol 1 mark for name 1 mark for formula	B1 x 2
3	Hydrogen bond δ_{+} H H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{+} H δ_{-} δ_{-} 1 mark for dipoles shown on propan-1-ol and water	B1 x 2

Oxford A Level Sciences

14 Alcohols Answers to practice questions

OCR Chemistry A

Question	Answer	Marks	Guidance
number	1 mark for hydrogen bond between H of OH on one molecule and lone pair on O on other molecule		
4	Reagents: Acid/H ⁺ and dichromate/Cr ₂ O ₇ ²⁻	B1	ALLOW H_2SO_4 and $K_2Cr_2O_7$
	Observations: Orange to Green/blue	B1	ALLOW correct displayed
	Distillation produces aldehyde CH ₃ CH ₂ CHO	B1	formula OR correct structural formula OR skeletal formula
	$CH_3CH_2CHO + [O] \rightarrow CH_3CH_2CHO + H_2O$	B1	DO NOT ALLOW molecular
	Reflux produces carboxylic acid CH ₃ CH ₂ COOH	B1	
	$CH_3CH_2CHO + 2[O] \rightarrow CH_3CH_2COOH + H_2O$	B1	ALLOW C_3H_7OH for propan-1-ol in equations
			DO NOT ALLOW CH ₃ CH ₂ COH for aldehyde
			IGNORE further oxidation of aldehyde
			ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic acid
5 (a) (i)	E and H	B1	
5 (a) (ii)	н	B1	
5 (a) (iii)	F	B1	
5 (b) (i)	$C_4H_8O_2$	B1	
5 (b) (ii)	2-methylpentan-3-ol	B1	
5 (c)	A homologous series is a family of compounds with the same functional group and similar chemical properties	B1	
	whose successive members differ by the addition of a $-CH_2-$ group	B1	
6 (a) (i)	Acid catalyst (e.g. conc H ₂ SO ₄)	B1	ALLOW named mineral acid or correct formula eg phosphoric acid, H_3PO_4 , sulfuric acid, H_2SO_4 or H^+ DO NOT ALLOW any carboxylic acids
6 (a) (ii)	$C_5H_{12}O \rightarrow C_5H_{10} + H_2O$	B1	DO NOT ALLOW use of C ₅ H ₁₁ OH
6 (a) (iii)	Structural isomers are compounds with the same molecular formula	B1	Same formula is not sufficient
	but different structural formulae	B1	ALLOW different structure OR different displayed formula

Oxford A Level Sciences

OCR Chemistry A

14 Alcohols Answers to practice questions

Question	Answer	Marks	Guidance
number			
	Stereoisomers have same structural formulae but different arrangements in space	B1 B1	OR different skeletal formula Different formula or different arrangement of atoms is not sufficient ALLOW different structural arrangement (of atoms) ALLOW have the same structure Stereoisomers have the same formula or molecular formula is not sufficient ALLOW different spatial arrangements (of atoms)
6 (a) (iv)	$H_{H_{2}C} \xrightarrow{(A+_{2}C+_{3})}_{H} \xrightarrow{(A+_{3})}_{H} \xrightarrow{(A+_{2}C+_{3})}_{H} \xrightarrow{(A+_{2}C+_{3}$	B1 x 3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above A and B must clearly show cis and trans configuration eg A Answers to A and B are interchangeable C: CH ₂ CHCH ₂ CH ₂ CH ₃ ALLOW -C ₂ H ₅ group in A or B or -CH ₂ C ₂ H ₅ in C DO NOT ALLOW -C ₃ H ₇ group in C
6 (a) (v)	The molecules have a double C=C bond which does not rotate Isomers A and B needs two different groups attached to each carbon atom of C=C bond	B1 B1	IGNORE comments about rotation ALLOW carbon double bond ALLOW Each carbon atom of the double bond is attached to a H and an alkyl group DO NOT ALLOW functional groups for groups DO NOT ALLOW the carbon atoms are attached to different groups "Each carbon atom in the double bond" implies a

Oxford A Level Sciences

14 Alcohols Answers to practice questions

OCR Chemistry A

Question	Answer	Marks	Guidance
number			
			carbon–carbon double bond for the first marking point
6 (b)	$ \begin{array}{c} $	B1 x 2	Balancing mark can only be awarded if the equation has a correct skeletal formula for the product
6 (c)	Reagents: Acid/H ^{$+$} and dichromate/Cr ₂ O ₇ ^{2–}	B1	
	Distillation produces CH ₃ CH ₂ CH ₂ CH ₂ CHO	B1	
	Reflux produces carboxylic acid $CH_3CH_2CH_2CH_2COOH$	B1	