OCR Chemistry A

Question number	Answer	Marks	Guidance		
1 1	A saturated hydrocarbon contains only carbon and hydrogen atoms joined together by single covalent bonds.	B1			
2 (a)	Octane	B1			
2 (b)	2-methylbutane	B1			
2 (c)	2,2-dimethylbutane	B1			
3 (a)	Hexane is a straight chain alkane and will have higher boiling point. 3-Methylpentane is branched	B1			
	Hexane molecules have more surface points of contact is between molecules. The London forces between the molecules will be greater and so more energy is required to overcome the forces.	B1			
3 (b)	2-Methyloctane is less branched than 2,2- dimethylheptane and will have the higher boiling point.	B1			
	2-Methyloctane molecules have more surface points of contact is between molecules. The London forces will be greater and so more energy is required to overcome the forces.	B1			
3 (c)	Hexane is a longer straight chain alkane than pentane and will have higher boiling point.	B1			
	Hexane molecules have a greater surface area and there will be more surface contact is between molecules. The London forces between the molecules will be greater and so more energy is required to overcome the forces.	В1			
4 (a)	$CH_4 + Br_2 \rightarrow CH_3Br + HBr$	B1			
4 (b)	Conditions: UV radiation	B1			
	$Br_2 \rightarrow 2Br^{\bullet}$	B1			
	Homolytic fission	B1			
4 (c)	3 monochlorinated isomers can be formed	B1			
5 (a)	$C_9H_{20} + 14O_2 \rightarrow 9CO_2 + 10H_2O$	B1			
5 (b)	$C_9H_{20} + 91/_2O_2 \rightarrow 9CO + 10H_2O$	B1			
6 (a)	$C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$	B1			
6 (b)	$n(C_4H_{10}) = 1.45/58.0 = 0.0250 \text{ mol}$	B1			

OCR Chemistry A

Question	Answer		Marks	Guidance
number			D4	
6 (c)	$n(O_2) = 6.5 \times C$	0.0250 = 0.1625 mol	B1	
	volume of O ₂ =	$= 0.1625 \times 24.0 = 3.90 \text{dm}^3$	B1	
6 (d)	$n(O_2) = 4 \times 0.0$	250 = 0.100 mol	B1	
	volume of CO ₂	= $0.100 \times 24.0 = 2.40 \text{ dm}^3$	B1	
7	chain length in	carbon atoms increases, the carbon creases and there will be a greater nd there will be more surface contact lecules.	B1	
	The London fo greater	rces between the molecules will be	B1	
		nergy is required to overcome the ing the boiling point.	B1	
8 (i)	Decane		B1	DO NOT ALLOW deceane
8 (ii)			B1	Formula must be skeletal AND must not include any symbol, e.g. CH ₃
8 (iii)	The molecules of straight chain alkane have more surface points of contact is between molecules. The London forces (also known as "van der Waals' forces") between the molecules will be greater and so more energy is required to overcome the forces.		B1	Both answers need to be comparisons Assume 'it' refers to decane IGNORE surface area ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact ALLOW Decane has stronger van der Waals' forces OR branched chains have weaker van der Waals' forces More intermolecular forces is not sufficient
9 (a) (i)	Step	Equation		IGNORE state symbols
	Initiation	$Br_2 \rightarrow 2Br_{\bullet}$	B1	IGNORE dots
	Propagation	$C_6H_{12} + Br \bullet \rightarrow C_6H_{11} \bullet + HBr$	B1	
		$C_6H_{11}\bullet + Br_2 \rightarrow C_6H_{11}Br + Br\bullet$	B1	If an incorrect hydrocarbon with six C atoms is used:
	Termination	$2C_6H_{11}\bullet \rightarrow C_{12}H_{22}$		DO NOT ALLOW any marks for the propagation steps but
	$2Br \bullet \rightarrow Br_2$		B1	ALLOW ECF for termination steps (i.e. 3 max)

OCR Chemistry A

Question	Answer		Marks	Guidance
number		$C_6H_{11}\bullet + Br\bullet \rightarrow C_6H_{11}Br$	B1	
9 (a) (ii)	The Br–Br covalent bond break with each bonded Br atom taking one of the shared pair of electrons from the bond to form two Br• radicals.		B1	ALLOW 'the breaking of a covalent bond' ALLOW the splitting of the bond in bromine ALLOW the breaking of a covalent bond where each atom keeps one of the bonding electrons IGNORE particle for atom ALLOW one electron goes to each product / species DO NOT ALLOW molecule or compound for atom IGNORE homolytic fission equations
9 (b) (i)	C ₆ H ₁₂ + 2Br ₂ –	$\rightarrow C_6H_{10}Br_2 + 2HBr$	B1	ALLOW molecular formula only.
9 (b) (ii)	1.2-dibromocy	clohexane	B1	Locant numbers MUST lowest possible e.g. DO NOT ALLOW 2,4-dibromocyclohexane etc. IGNORE structures
10 (a) (i)	UV radiation		B1	ALLOW high temperature OR 300 °C IGNORE light/radiation DO NOT ALLOW any catalyst
10 (a) (ii)	The first step is are formed usi	m is radical substitution s initiation where I• and Br• radicals ng energy from the UV radiation. All proceed by homolytic fission	B1 B1	IGNORE any state symbols in equations Radicals do NOT need a single dot IGNORE dots
	$ Br \rightarrow \bullet + Br\bullet$		B1	DO NOT ALLOW homolytical fission
		s propagation where the products are tity via a chain reaction.	B1	Heterolytic anywhere in the answer contradicts this mark
	$CH_4 + Br \bullet \rightarrow C$	H₃• + HBr	B1	IGNORE I + $CH_4 \rightarrow HI + CH_3$
	CH ₃ • + IBr → 0 One possible t CH ₃ • + Br• → 0	ermination equation is:	B1 B1	IGNORE $CH_3 + IBr \rightarrow CH_3Br + I$ DO NOT ALLOW equations with H OR any other incorrect equation (i.e. not one of the four propagation steps shown) ALLOW any other suitable

OCR Chemistry A

Question	Answer	Marks	Guidance	
number			termination steps DO NOT ALLOW termination steps with H QWC can only be given if marking points 2, 4 and 5 have been awarded	
11 (a)	In homolytic fission, a covalent bond is breaks with each bonded atoms takes one of the shared pair of electrons from the bond.	B1		
11 (b)	$CI^{\bullet} + C_4H_9CI \rightarrow C_4H_8CI^{\bullet} + HCI$	B1	IGNORE dots even if incorrect	
	$C_4H_8CI^\bullet + CI_2 \ \rightarrow C_4H_8CI_2 \ + \ CI^\bullet$	B1		
11 (c)	$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$	B1	ALLOW any correct multiples for these equations eg $2C_4H_{10}$ + $9O_2 \rightarrow 8CO + 10 H_2O$ IGNORE state symbols ALLOW equations for incomplete combustion that give CO_2 with CO and/or C eg $C_4H_{10} + 4O_2 \rightarrow 3CO + C + 5H_2O$	
12 (a) (i)	Structural isomers are compounds with the same molecular formula but different structural formulae	B1		
12 (a) (ii)	Any from C_6H_{14} , C_7H_{16} , C_8H_{18} , C_9H_{20} , $C_{10}H_{22}$	B1		
12 (b) (i)	UV radiation	B1		
12 (b) (ii)	$C_4H_9CI = 12 \times 4 + 1 \times 9 + 35.5 = 92.5$	B1		
12 (b) (iii)	H H	B1 x 2		
13 (a)	C _n H _{2n+2}	B1		
13 (b) (i)	$C_8H_{18} + 81/_2O_2 \rightarrow 8CO + 9H_2O$	B1		
13 (b) (ii)	Incomplete combustion takes place when there is a limited supply of oxygen	B1		
13 (c)	$n(C_8H_{18}) = 22.8/114.0 = 0.200 \text{ mol}$	B1		
	$n(O_2) = 8.5 \times 0.200 = 1.70 \text{ mol}$	B1		

12 Alkanes Answers to practice questions

OCR Chemistry A

Question number	Answer	Marks	Guidance
	volume of $O_2 = 1.70 \times 24.0 = 40.8 \text{ dm}^3$	B1	