10 Reaction rates and equilibrium Answers to practice questions

OCR	Chemistry A
-----	-------------

Question number	Answer	Marks	Guidance
1 (a)	1: The enthalpy change, ΔH ;	B1	
	2: The activation energy, $E_{\rm a}$	B1	
1 (b)	ΔH is unaffected as it is the difference between the reactants and products	B1	
	$E_{\rm a}$ decreases as a catalyst allows an alternative route of lower activation energy	B1	
2 (a) (i)	T_1 = lower temperature; T_2 = higher temperature		Candidates do not need Ea on graph
	axes labelled number of molecules and (kinetic) energy	B1	ALLOW particles instead of molecules on the y axis DO NOT ALLOW atoms
	Drawing of two Boltzmann distribution at two different temperatures starting within the first small square of the origin AND not touching x axis at high energy	B1	instead of particles/molecules ALLOW ECF for the incorrect use of atoms (instead of molecules/particles) DO NOT ALLOW enthalpy on
	Higher temperature curve (T_2) has lower maximum AND maximum shifted to higher energy	B1	the x-axis
	At the higher temperature more molecules have energy above activation energy	B1	DO NOT ALLOW increase of more than one small square at high energy end of curve.
			Maximum of curve for higher temperature to right AND lower than maximum of lower temperature curve AND above lower temp line at higher energy Higher temp line should intersect lower temp line once
			DO NOT ALLOW lower activation energy QWC requires more molecules have or exceed activation energy/ <i>E</i> _a . IGNORE more molecules have enough energy to react for the QWC mark (as not linked to <i>E</i> _a) ORA if states the effect when the temperature is lower IGNORE (more) successful collisions
2 (a) (ii)	concentration is reduced	B1	Correct effect on rate must be linked to reason for the
	and the rate of reaction decreases	B1	first marking point.
			ALLOW molecules are further apart

10 Reaction rates and equilibrium Answers to practice questions

OCR Chemistry A

Question number	Answer	Marks	Guidance
			IGNORE less crowded ALLOW particles or atoms for molecules ALLOW 'space' for volume DO NOT ALLOW area instead of volume ALLOW collisions occur less often OR decreased rate of collision IGNORE less chance of collisions 'less collisions' alone is not sufficient IGNORE successful
3 (a) (i)	 1 mark for 2NH₃ added as product below reactant 1 mark for Δ<i>H</i> labelled with product AND arrow downwards 1 mark for <i>Ea</i> labelled correctly AND above reactants 	B1 x 3	IGNORE state symbol ALLOW product mark even if product line above the reactant line ALLOW –92 as a label for ΔH ALLOW this line even if it has a small gap at the top and bottom ie does not quite reach reactant or product line The curve must be drawn for this marking point IGNORE arrows at both ends of activation energy line but DO NOT ALLOW arrow pointing down The <i>E</i> _a line must go to maximum (or near to the maximum) on the curve ALLOW if the line clearly shows an activation energy and is not an enthalpy change ALLOW this line even if it has a small gap at the top and bottom ie does not quite reach the maximum or reactant line
3 (a) (ii)	$\Delta_{\rm f}H = -92/2 = -46 \rm kJ mol^{-1}$	B1	DO NOT ALLOW 46 with no sign
3 (a) (iii)	Any value between +1 to +249 kJ mol ⁻¹	B1	+ sign is not needed
3 (a) (iv)	$250 + 92 = 342 \text{ kJ mol}^{-1}$	B1	+ sign is not needed
4 (a)	Equilibrium position shifts to right to opposes the increase in SO_2 concentration	B1	

OCR Chemistry A

10 Reaction rates and equilibrium Answers to practice questions

Question number	Answer	Marks	Guidance
4 (b)	Equilibrium position shifts to the right side as there are fewer gaseous molecules on the right	B1	
4 (c)	Equilibrium position shifts to left as the formation of reactants in the endothermic direction	B1	
4 (d)	Equilibrium position does not move as a catalyst speeds up forward and reverse reaction by the same amount	B1	
5 (a)	Equilibrium position shifts to left as there are fewer gaseous molecules on the left	B1 B1	Note: ALLOW suitable alternatives for 'to left', eg: towards CH ₄ or H ₂ O / towards reactants OR in backward direction OR in reverse direction OR decreases yield of CO or H ₂ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW fewer molecules on reactant side OR smaller volume on the left hand side ALLOW ORA if specified IGNORE responses in terms of rate
5 (b)	Equilibrium position shifts to right as the formation of reactants in the endothermic direction	B1 B1	 Note: ALLOW suitable alternatives for 'to right', eg: towards CO or H₂ / towards products OR in forward direction OR increases yield of CO or H₂/products OR decreases amount of CH₄ or H₂O/reactants ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' ALLOW reaction takes in heat ALLOW reverse reaction gives out heat ALLOW ORA if specified IGNORE responses in terms of rate
5 (c) (i)	increases the rate without shifting equilibrium too much to the left	B1	ALLOW if greater pressure used it increases safety risk ALLOW if greater pressure used it is more expensive ALLOW higher pressure will shift equilibrium position even more to the left

10 Reaction rates and equilibrium Answers to practice questions

OCR Chemistry A

Question number	Answer	Marks	Guidance
number			It is a compromise on its own is not sufficient but ALLOW compromise between rate and yield OR between rate and safety
5 (c) (ii)	 1 mark for "Boltzmann distribution drawn with axes of 'number of molecules' and 'energy" 1 mark for "Catalyst allows the reaction to proceed via a different route with lower activation energy" 1 mark for "There are then more molecules with energy above the activation energy with a catalyst" 	B1 x 3	Boltzmann distribution - must start at origin and must not end up at 0 on <i>y</i> -axis ie must not touch <i>x</i> -axis ALLOW particles OR moles as <i>y</i> -axis label IGNORE minor point of inflexion in the curve DO NOT ALLOW two curves DO NOT ALLOW two curves DO NOT ALLOW atoms but credit atoms if used in a second marking point DO NOT ALLOW enthalpy for x-axis label ALLOW this mark from a labelled diagram more collisions per second is
6 (a)	High pressures as there are fewer moles of gas molecules on the right-hand side Low temperatures as the forward reaction is exothermic	B1 B1	not sufficient ALLOW ora ALLOW fewer particles OR fewer molecules ALLOW ora
6 (b)	High pressures are very expensive to generate Reaction rate may be too slow at a low temperature	B1 B1	ALLOW high pressures provide a safety risk OR high pressure is too dangerous ALLOW with low temperature molecules cannot overcome activation barrier
7 (a) (i)	$K_{c} = \frac{[NO_{2}(g)]^{2}}{[N_{2}O_{4}(g)]}$	B1	
7 (a) (ii)	$[NO_2(g)] = \sqrt{K_c \times 0.50}$ $= \sqrt{5.0 \times 10^{-3} \times 0.50} = 0.0500 \text{ mol dm}^{-3}$	B1	
7 (b) (i)	$K_{\rm c} = \frac{[{\rm NH}_3({\rm g})]^2}{[{\rm N}_2({\rm g})] [{\rm H}_2({\rm g})]^3}$	B1	
7 (b) (ii)	$K_{\rm c} = \frac{1.54^2}{9.35 \times 0.32^3} = 7.74$	B2	

10 Reaction rates and equilibrium Answers to practice questions

OCR	Chemistry A	
-----	-------------	--

Question	Answer	Marks	Guidance
number			
8 (a) (i)	$K_{\rm c} = \frac{[{\rm HI}({\rm g})]^2}{[{\rm H}_2({\rm g})] [{\rm I}_2({\rm g})]}$	B1	
8 (a) (ii)	$35.0 = \frac{(1.507 \times 10^{-2})^2}{(2.10 \times 10^{-4}) \times [l_2(g)]}$ $\therefore [l_2(g)] = \frac{(1.507 \times 10^{-2})^2}{(2.10 \times 10^{-4}) \times 35.0}$ $= 0.0309 \text{ mol dm}^{-1}$	B2	
8 (b)	Rate of forward reaction = rate of reverse reaction AND Concentrations are constant	B1	
8 (c)	Equilibrium position shifts to left	B1	
	as the formation of reactants in the endothermic direction	B1	
8 (d)	Equilibrium position does not change	B1	
	as there are the same number of gaseous molecules on both sides of the equation	B1	