NeR Gomponion for B level OCR Computer Saiencs.

Contents

Product Support from ZigZag EAUCAtIONuiieeviscrrarmiirisnsissssansiisssssssisssssnsnassssisssssssssnssessssasssssssnsssssassesssanssasssssssssssssnsssssnas i
Terms and CONAILIONS Of USE cevueruureiiiiieiiiiiiiiiiiieeriensmenmmosssssississisisissaeiaiseaiesatesssnesessnmssetestsnsstessestememmassiiismmsmimmissaiisies iii

T ACN S INEFOUUCTION 1. evsterenrersresesscerarersssssssnsssessssanssssnsssnssssssssassssssssesssasssssassssssssesssassssssssnsssstassssssssssnsssssasssnssssanssnsssssnsase b

CHOOSING @ PrOJECE ...eeeceeeeeiiiiiiiieciissssssssssennnssssestnnssneniesssonnnnsnnnns s 64800 HATISHSEEHRIRORURIE Iossssresa TRNARRIE RIS ORUdNRITISSOT SRRR IR R OISO RRR TR NI asose 2
KEY CONSTACIATIONS ...cuenrereen s i s sS04 T s O 4D KO RO TR T I TP SN SR TE N 0B NS0 PO T R EH00 oSS S SR AR ST P SNBSS BN EHIHE P 2
COMIPIEXITY ovrverervenieerimee e iR o o0 0 3 0 B T M s ot T O I s s ev v s o s 3
PrOJECE IS .o veerererreerereeren saberis B A A PSS R ST SRS AN S S e Ny S o A e TN NSO SN OTEE 3

1: Analysis (10 MArks) ... iisioiiiisitesssassredssinvsuetsrssississsssssnnsranisinssisemiossaiioss ioesias chobsusian bs sninatbs sisnnsossisaiinsszonsapsvssianss D

1.1: ComPULational MELNOUSccocoreeeiapssimissmsisiisiimismsirre oeniss e fantSLsaas 5888781888 0800 180900 018 TATESHENa FRTE LSS E VRSV EEE YRS A S PN AR AP SRS O R RSO Y 5
1.2: STaKENOIAEIS. ...coviiiireeeve e i s va iR E R AT 4 5 L S T B I P e a0 S e B S iy 6
1.3: Research of eXistiNg SOIULIONSueiiiviiirieiiiie sttt st s e s s an s s e s b e s s s s s s s e s e e e s st sra b e s rs e e s s e s ne e s e e s nasern e s eerbansas 9
1.4: Essential fRatUreso i s o i e i e o s 0 SV s S oo S S W 0 SV A S S SN AR TS 10
L5 LimMIEAtIONS .ot ieiuerereeernnerserssrassassssssanssnunsessssnssssrsssssanensnssessssssnssnsansssensssnssnnsmnnrrrsssasssssnsssnsssessesssrsssasesassyssneeerssnssassnanssssansnreqesesesssssnn 10
1.6: Hardware and SOTtWare FeQUINEIMENTS ..ot sirae s ssss b sssassbsessssss s eanas sassbaesdssbbeshde 448 o4 den s abe s rs s 4bsea e e b s e ban b e s eh e s s bbb 11
1.7: SUCCESS CrILBIA ..euvtiereieiireeisriessioisisnnsrorerereeeiersessaossnnensessssssssacsmeseessnes sesenes SORTRR I S MR R T 12
ANAIYSTS » CRECKIIST ...oireiiciiccereercanrecreanere e ree e sonere e sen e s e fy S Y403 D AR SRS PE KRB R ERAEN S EY 0 O ASAN SRRSO PR B0 SRS SR NSRS EROEE Y YA 13
2: Design (15 marks)sissassnisnrsissisimisar i m i i sra e rai v et e s deisseasesvsnsneasseivst s davisinanne 14
2.1: Problem deCOMPOSITIONcuee issiississisissinssssieshssoss e ses sahs es i 4o oo aasnseaay e s s asam b b3 e HH0 S S0 B E o TR PR RSSO T HE AR 14
2.2: Structure of the SOIULIONc....vee. o i o TS BT T e e S N A s N NN YOO TGO E OSSR a s 15
2.3 AIZOTTENIM AESIZN 1 e e rnere e e b s S48 48 S P YA oS YA RS S SR SR FE S S 44 SO S LY STA T oA SRS RS SEFTEES 17
2.4 Usability foatlres: jiiuimisiisestscssiiai otterssvssssurasyidsiin s it s it o i i i e ooV B e Tt s o oV B B Bt 21
2.5: Variables aNd ValIIationueieciiereieiiie s s be s be a4 b e ba e s s s £ 44 E SRS R4S LSRN 4 S e RS ERR s b s R 21
2.6: [terative test data..... s i e e e v s s S 0o i G e s s i A e S ATV VeSO e B e e 23
Ry A oL e LAY LY T 4Ty o =L A = - O P PP PPS 24
DeSIZN 1 CRECKIIST . .erevereee e eminimimassmmtois oo e sy BN Y0 S O VA S o NS85 N K 65 ST P D S0P S SV S VRN 25
3: Iterative Development (15 marks)
3.1: Iterative develOpmMENt STAZES. ... uiititeiiasiaiisiveivvssiasinessiisiassm s siaes s b ooy S0 ST S b S O S SeSEa a T
3 Y 1o 1o 1] =T g Y 2 OO e e = A AR S s By O T PR S e e S e R S A T TS S OO0
3.3: ANNOTALION wovirer i ciienmenseorssissssessssaamiohoya s o Eyisdeis sy AP asE S5 0 P EINS £ Eh Eh e e AR ST M P S GBS R At e P PR R AT BTSSP S
3.4: NaMINE CONVENTIONS.....uuererianrrrrenerssonss iiiiiE il ia i sburaasassnesessobsvatsasseratasidaido s s chyuasdonannnlinatonssbainaiaras yabiiiesn vnsias o bl EWIMIIIRS
T2 11T I T Y2 OO PTPR
3.6: REVIBW couuvvvvvenenereesers oVaninssnbnssbussseshiess oo s yin e s i b B i G A R S e G A SR v v oo
Iterative DeVElOPMENT » CRECKIIST .. .uiirvieiet ettt et et e e e sms s s eae e b se s s d e e s e b e e b et bebad s msrissineennesbne

4: 1terative TeStiNG (10 MArKS)......ccocciiioiierieiitiiiiiieiiiinsinnsrenserssarsasssas e s s erssasssessasassnsssresesssnssanesssssssiastsisiemsisssannssisnnssissorses 3O

B0 T@STING oo w85 580 N A B SE0 EEHEHEEE E BEETY ST O W s NSO Y AR TSP I 36
4.2: ReMEIAl GCHIONS oveviveeriierrererriesvereonvasvonronoosnee ssagibaiiaassaeniby s i e o s b b e e b e v s i R 36
L= 1401 E=T =T =T o ST ROO 37
Iterative TeStiNg » CheCKIISt ..oiivuiiiiriernessee s i i s s i s ooV sV VB v s AR s s A e A e T e e 40
5: Post-development TesSting (5 MArks)ccuuuuiiimeuumimmmmmummmmmmmsii s s erssassstessasssssssssarsssrennssersrnnssrrsssnasns 41
5.1: Testing fOr FUNCHONo.oouooen e uiasssssnmamss s s BTSSR A v oo R b8 SN s FoFa a4 AT PR YoM e TAT sV s i e T aR A 42
LT =Yy T a Y oY £ o 2O 42
Post-development Testing » CheckliSt g s s i i i s vt e e b e e L e a3 e G e oo 43
6: Evaluation {15 Marks) .iuceeeeeueeee e sl jommmeaomsmmannasnsne s ennasanenmssnensn s ssn (rsnassy sy esey sy s sva SNy R R A A AT RN AR P AR NS S A 0 44
6.1: Examining success (Or OtherWise)X. ... iaiimmsinesvi o i s s svsvissseess s es s oA Ess 1o 05 O s VT va o us WO A T an s RS w R B A R 44
6.2 ASSESSING USADIITtY,iaxamu0samics conbasiasmssinsuuiassintonsss 8 omsmae st s oSS AN S D S YA e RO YA Y 45
6.3: Maintenance and lMiItations L. . ..eoiveeernereovenere divebsanmesiia i S i s sss e e i S i i i i s i T 45
6.4: QUAlity Of WITTEEN COMMUNTICATION 1eivvierietteete e eeiiiiiiitt et e s btesss b s eraessse e s e s e sseesdeaan e ss e e e e e s 2o b emn et s e eae e s neme s s oesimsinsebbasbes 46
EValUuAtion » ChECKIISt ...ooveeeiee e i b e s e s W Ao o U b o G oo YV et s s e s S AR T e 47
T WT e Fe LT3 =T I o oY =T ot] T OO PPN 48
L] 1oL 3 | T P e LT (T T L T T T L T T LT LT L LT r e T L Pt A e e ot DR LRy O 49

Teacher’s Introduction

IMPORTANT - please read before using this resource

This resource is intended to supplement your teaching only. As with all Non-Exam Assessment (NEA) materials it is the
teacher’s responsibility to decide what level of support is appropriate for their students and in accordance with the rules
from the exam board. For example, you may simply wish to read this material to better inform yourself. Alternatively, you
may consider whether it is appropriate to distribute some of the material to students for reference.

The resources here are provided as one experienced teacher’s interpretation of the specification. The author does not
have any special knowledge of what to expect on any particular assessment.

All exemplar material in this resource is based on entirely original, fictitious scenarios. Any possible resemblances to any
future task released by OCR or any other exam board is co-incidental. However, we remind you that it is the teachers’
responsibility to decide how this resource can be used to support your students.

This guide has been produced to provide clarity for teachers and students who are embarking on the OCR A Level
Computer Science non-exam assessment (NEA), first assessment from 2017. This component is worth 20% of the
overall A Level.

The nature of this part of the course is such that there is a great deal of freedom and flexibility in terms of what
project students might choose. In my own experience, students who are not used to such breadth of choice can
become overwhelmed, resulting in decisions being delayed or not really being made at all. The 'project ideas'
section in this guide can be used as a starting point for brainstorming and discussions to allow everyone to see
what options they genuinely have.

Although this guide can be used as a reference source, to look up errant facts as they are needed, it would be
more useful to use it at the beginning and end of each phase of the project. Before the analysis begins, for
example, students could be asked to read through that section and to identify the key requirements or the key
pitfalls of that phase. Once the analysis is complete, this guide could be used as the basis for reviewing work, and
there are checklists included to that effect. By the time their work is due, each student should be intimately
familiar with the mark scheme, and their mark should come as no surprise to them.

However you see fit to use this resource to better equip your students for the NEA, I'm confident it will prove
invaluable, and | wish you and your students the very best in this most rewarding part of the course.

R Lee, February 2020

mili Companion for A Level OCR Computer Science Page 1 of 50 © ZigZag Education, 2020

Choosing a Project

Key considerations

v

Although you have a huge amount of freedom when it comes to choosing a project, there are some constraints to
bear in mind. Some of these are built into the qualification and the mark scheme in such a way that ignoring
them would cost you marks. Others are simply good advice. Make sure you can say 'yes' to all of the questions in

the table below before you make a start.

Question

Things to consider

Is your idea likely to result in a solution that
contains a graphical user interface (GUI)?

According to the OCR specification, ‘all tasks completed in all
languages need to have a suitable graphical interface’.

If you have a text-based interface, or no interface at all (for
example, with a completely automated control system), you're
not meeting the criteria, and a mark of zero could potentially
be awarded.

Are you going to be using one of the
following languages?

Python

One of the 'C’ family (e.g. C# or C++)
Java

Visual Basic

PHP

Delphi

If you are, that's fine. If not, you'll need your teacher to clear

your project first with OCR. For details on how to do this, see
appendix 5e of the OCR specification. Whichever language or
languages are used, the rule on the GUI (above) still applies.

If your solution is set to include a combination of languages,
each language should be either on the list or cleared with OCR.

Will your solution have scope for validation?

The word ‘'validation’ appears seven times on the NEA mark
scheme, and the related word ‘robustness’ appears once.

This means that a project that does not include validation will
lose marks in more than one place.

Validation can exist in one of many ways, such as:

o Text boxes that incorporate range, lookup, length,
format, type or presence checks ‘

° A game board that blocks illegal moves, such as moving
a rook diagonally in chess

° A sensor or scanner that alerts the user to a value
outside an acceptable range

Do similar solutions exist?

There should be a computer-based or manual system already
in existence that performs a similar or related task. It doesn't
need to fulfil exactly the same role that you're trying to
address, but for full marks in the analysis, you need to
research solutions to similar problems.

Are you definitely making a computer science
project and not an IT project?

Is it interesting to you?

The focus of your project needs to be processing. If you create
a solution that simply stores, manages and retrieves data,
you've made an IT project. The processing also needs to be
non-trivial. If your project could be made using Microsoft
Excel, without adding any code, it's an IT project and not a
computer science project.

You're going to spend dozens of hours coding the solution and
thousands of words documenting what you do. Unless you are
working on a project that genuinely engages you, this will be
a struggle.

NEA Companion f_or A Level OC§ Computer Science

Page 2 of 50 © ZigZag Education, 2020

Complexity

When trying to settle on a project, both teachers and students struggle with the question 'is it complex enough?'
It's not always a straightforward question to answer, because no part of the OCR mark scheme awards marks for

a complex project or removes them for a simple one. That's a point worth highlighting for the skim-readers
among us:

There are no 'complexity’ marks on the OCR A Level Computer Science mark scheme. A simple project

that is described fully by all top-band descriptors on the mark scheme can achieve full marks.

Usually, a project that is too trivial will be unable to attain all of the marks simply because it does not adhere to
a descriptor.

For example:

¢ In the design section, marks are awarded for defining 'in detail, the structure of the solution to be
developed'; a trivial solution is not capable of offering such detail.

e Also in the design section, there are marks awarded for decomposing the problem into pieces and designing
algorithms that fully address each of those pieces; a trivial solution will either fail to identify the
complexity of a problem or fail to address it.

e |terative testing requires the implementation of prototypes, which will not be possible for trivial solutions.

e Post-development testing requires candidates to address robustness, function and usability, which will
typically not be an option if the solution is too trivial.

In short, as long as it meets the criteria in the previous table (with particular emphasis on creating a computer

science project instead of an IT project), it's probably complex enough. Always be guided by the wording of each
mark scheme descriptor, and, if in doubt, a centre - but not a student - could contact OCR for advice.

Project ideas

Ideas Benefits Potential problems

= The inherent complexity can leave you e If you've never made a game before,
with plenty of opportunities for detailed you might be surprised by how
development and testing work. complex games can be to develop.

e Aside from that, if you have an interestin | ¢ Consider how likely you are to put in

Games games development, or artificial the extra work needed to learn

intelligence, a project like this is likely to new skills.
hold your interest. e You should also ensure you select a

project in which there is scope for data
validation, or some marks will be
unavailable to you.

e This is probably the type of program e [t can be quite easy to create a front
with which you are most familiar, end to a database that doesn't do any
Desktop or meaning fewer new skills will be needed substantive processing of its own; a
web-based at the outset. solution needs to do far more than add,
data-handling | ¢ Even if you do not look beyond your edit and retrieve data.
applications school or college, you should have no

problems finding an end user.
e There is huge scope for validation.

NEA Companion for A [eveI_OCR Computer Science Page 3 of 50 © ZigZag Education, 2020

ldeas Benefits Potential problems

e You're likely to have plenty of real end To develop an effective solution, you're
users close at hand in the form of teachers likely to need to learn about learning
and students. theories or a new subject, which can

, e As astudent yourself, you probably know take time.

Interactive Ml - . : .)
learning about existing |nter:?1c.t|ve learning Th<'=.re isa pF)tent|al dang.er of Freatlng
. resources already, giving you a head start a simple quiz system, which might not

on part of the analysis. attract all of the marks.
If your solution is to involve large
amounts of learning material or many
questions, this can be time-consuming.
¢ learning to develop mobile apps can be Not all programming languages lend
hugely beneficial to your employability. themselves to app development, so

e You can incorporate familiar features such your language may not be
as Google Maps and notifications. appropriate (although plug-ins for

e Creating a solution in which multiple additional languages are constantly
devices intercommunicate can be more being developed).

Mobile apps straightforward, without the problems The same mark scheme will apply to an
presented by school or college firewalls app as a desktop application, so you
and other security systems. will still need to consider everything in

the 'checklist' table above,

There is a risk that you could rely too
much on plug-ins and not develop
enough of your own original code.

¢ An abundance of low-priced sensors and The more unique your project becomes,
other components can turn a Raspberry Pi the more difficult it will be to seek

c L or Arduino into a device that interfaces help from peers.

m:r:‘it:::ir{g with the real world. You still need to pay attention to the

systems e Much of the complexity will be apparent in requirements for a GUI and for data
setting up the hardware and importing validation in order to be eligible for
appropriate libraries, so the expectation will full marks.
be for a somewhat less complex project.

e A wide range of ideas exist in this A great deal of data collection would be
category, from business modelling to needed in order to produce an accurate
predicting the impact of global warming simulation, which will take time.

Simulations on different animal species: The complexity demands of some

¢ You will have plenty of opportunity to simulations might be too much to fit
combine your computer science knowledge into an A Level project, so you should
with expertise from a different discipline. be ready to scale back your objectives

if time starts to catch up on you.

These are only broad categories; there are limitless potential computer systems that can be developed.
Consider your own interests, talk to friends and family, and have a look online for ideas in other

people's projects. Your work should be your own, but you are encouraged to seek ideas wherever they
might be found.

NEA Companion for A Level

OCR Computer Science

Page 4 of 50

© ZigZag Education, 2020

1: Analysis (10 marks)

Analysis is focused primarily on the problem rather than the solution. If you are developing a program for a
particular situation, you need first to understand the situation. This includes examining prospective users and
similar systems, and getting to grips with the high-level ideas around what the solution will ultimately do.

Mark band 1 1-2 marks
Mark band 2 3-5 marks
Mark band 3 6-8 marks
Mark band 4 9-10 marks

1.1: Computational methods

MARK BAND 1 ‘ MARK BAND 2 ‘ MARK BAND 3 | MARK BAND 4
Identify some of the Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
features of your chosen Once you have identified Explain why a Provide an explanation
problem that make it a these, describe them in computational approach for each feature of the
good choice for solving sufficient detail that they is a good one for problem, e.g. why is
using computational could be understood by this problem. abstraction (for example)
methods (such someone with no an applicable technique
as abstraction). knowledge of for this particular feature
the problem. of the problem?

You need to explain why a computational approach is suitable for the problem you're addressing. You don't need
to do this first (in fact, it's probably easier if you save it until the end of the analysis, or maybe include it in the
design). It only appears first here because it's the first item on the mark scheme.

So, what are 'computational methods'? It's a term that covers a wide range of techniques that you might have
encountered elsewhere in computer science. The table below contains details of some of the more common ones.

Abstraction Will your solution make a complex reality straightforward?

Decomposition | Does the problem (and prospective solution) lend itself to being broken into smaller parts?
Concurrence Do you require a solution that can perform multiple tasks simultaneously?

Selection Are decisions needed that will depend on inputs and other data?

|teration Will your solution perform the same task, or a similar one, repeatedly?

Modelling Do you need to represent or simulate some aspect of the real world?

Visualisation Is there a need for outputs of different forms, such as graphical, sound and text-based?
Data mining Is there some need to spot patterns in large amounts of data?

You don't need to collect the set; just choose the ones that apply, then describe exactly where in the problem
each approach is needed. You're not likely to need, for instance, visualisation to be a prominent approach
throughout, but perhaps the centrepiece of a dashboard form is a line graph.

The dashboard specified by the stakeholder needs to provide an interface that can provide an at-a-glance
summary of which student projects show the greatest likelthood of plagiarism. Visualisation [IDENTIFY] will
be at the centre of this part of the solution, with Internet plagiarism and peer plagiarism highlighted in
e.q. | different colours [DESCRIBE]. There will also be, as stipulated by the stakeholder, a line chart, which shows
the percentage of potentially plagiarised content across all work submissions for each student [DESCRIBE].
Using this approach will allow the user to make a judgement on whether to investigate further, as all
necessary information will be visible in a single place [JUSTIFY].

NEA Companion for A Level OCR Computer Science Page 5 of 50 © ZigZag Education, 2020

1.2: Stakeholders

A stakeholder is any individual with an interest in the solution that you are developing. End users are the main

stakeholders to consider, but data subjects (i.e. people identifiable by any data processed by your solution) are

also stakeholders. In this section, you need to examine how your solution will meet the needs of stakeholders.
MARK BAND 1

MARK BAND 2 MARK BAND 3

MARK BAND 4

Identify the stakeholders Mark band 1 plus: Mark band 2 plus: The wording in the mark

as either individuals or
groups, describe them and
describe what they might

Describe how they would
use the solution as well
as what features they

Describe (rather than
identify) the stakeholders
and describe why your

scheme is identical for
mark bands 3 and 4, so the
emphasis is on providing

want in your solution. detailed description

and explanation.

solution will meet
their needs.

might want.

Before you identify the stakeholders, you should first introduce the problem and the organisation to which it
pertains. The following questions, in this order, should help you get started on this section:

1. What is the name of the organisation?

2. What does the organisation do?

3. What problem does the organisation have that you could attempt to solve?
4. Who are the stakeholders that would be affected by your solution?

T

Ideally, stakeholders are real individuals of whom you can ask real questions, so you should try to choose
individuals to whom you have some access.

No one will be conducting investigations as to whether your stakeholders are real, and that you actually
spoke with them, but it's so much easier if you do. With a real stakeholder, you ask them about the

solution they want, make it, and then ask their opinion of it at the end. With an imaginary stakeholder,
you have to fabricate an interview, think long and hard about what features to include, then invent a
plausible opinion about everything later. Honestly, it's exhausting.

In order to address the needs of your stakeholders, you should first find out what their take is on the problem, as
well as what they might want from a solution. There are several ways to this, and you can choose one of these or
take more than one in combination. Other approaches may also exist, depending on the nature of the problem.

e

Interviews are useful for gathering large amounts of data from a small number of
stakeholders (including a single stakeholder). Questions can be open-ended, and follow-up
questions can be asked. You might, for instance, ask what they think are the problems with
the current solution, and be given a list of 20 items. In an interview, you could ask them
which are the most significant three, or ask for specifics about how they might want a
solution to work - it might differ from your own vision.

A transcript (a record of everything that was said by both interviewer and interviewee)
will need to be included for each interview conducted.

NEA Companion for A Level OCR Computer Science Page 6 of 50 © ZigZag Education, 2020_

Questionnaires lend themselves to collecting a small amount of data from each of a larger
number of stakeholders. If you wanted to create a college-wide system to be used by all
staff, you might want to collect information from a dozen or so people, but a dozen
interviews would be quite time-consuming.

Long-answer questions tend not to lend themselves to questionnaires, as people can ignore
them more easily than in an interview, and you're less likely to be nearby if they do not
understand a question. Multiple-choice questions, ranking questions and those that require
short answers are appropriate for questionnaires, and can make subsequent statistical
analysis straightforward and meaningful.

Observation involves watching the stakeholder using the current system, and can give you
insights beyond what you might find in a questionnaire or interview. On which screen do
they spend the most time? How long does it take to perform a particular task (you can time

O o it)? Are there any features that they struggle to find?

Since you're looking to create a solution that improves on what’s already available, you
might simply spot a four-click activity that you could simplify to two clicks.

When planning questions to ask, bear in mind the following:

e Each question should produce an answer that genuinely helps in the development of your system.
Asking 'do you like the current system?' yields a 'yes' or 'no’, neither of which really helps. Asking 'if you
could change one thing about the current system, what would it be?’ gives you something to go on, and
even leaves the respondent the option of saying 'nothing'.

e Recognise that your technical knowledge might be greater than that of your stakeholder. 'Should this be an
integer?' is less likely to be understood than 'will this ever need to store fractions or decimals?’

e Don't make it too easy on your stakeholders by always providing 'l don't know' or ‘none of the above’
options. Alternative approaches, such as placing features in order of importance, or scoring statements on a
scale of 1 to 10, might give you more meaningful data.

Once you have gathered your data, it needs to be analysed. Transcripts of interviews or copies of
questionnaires are not enough. Describe how you plan to proceed with your solution as a result of

engaging with the stakeholders, and justify any choices you make. This could be done textually or
diagrammatically, perhaps by way of flow charts or data flow diagrams (DED).

Good and bad interview questions r-
Problematic Better Explanation
How bad is the current How would you rate the quality | The problematic question assumes that the
interface in your opinion? of the interface on a scale of person answering the question believes the
1t 10, 10 being the best? interface is bad. That might not be their opinion.
How wou’Id you rate the How would you rate the The problematic question is really two questions.
program'’s interface and inferface? The interface might be perfect and the
performance? H°";’ would y;’“ rate the performance abysmal, but the question seems to
PErOMAnCEs assume that the ratings will be the same.
Do you always keep a How often do you keep a Yes/no questions don't really add much to your
printed copy? printed copy? understanding. If they have kept a printed copy

all but one of the thousands of times they have
used the system, the honest answer is no’.

If you're conducting an interview, don't worry about going off-script. There's nothing wrong with asking a

! question you weren't planning on asking. Often, an answer you receive might require another question.
The respondent might say ‘| hate the menu structure’, at which point you'd probably want to ask for specifics.

NEA Companion for A Level OCR Computer Science Page 7 of 50 © ZigZag Education, 2020

Good and bad questionnaire questions E

Problematic Better Explanation
How often do you use the system? How often do you use the system? Presenting the respondent with
O More than once a day options has a few advantages.
O 3-7 times a week The question can be answered
L 7-2 times o week more quickly, so you're doing
O Less than once a week them a favour. They're also

quicker for you to analyse, as
you're simply counting ticks.

When did you last update When did you last update the software? | There are gaps as well as overlaps
the software? O Within the last 24 hours in the problematic options.
O Today O Between 1 and 7 days ago "Today' is part of 'this week’,
O This week [0 Between 8 and 14 days ago there's a gap between last week
O Last week 0 More than 2 weeks ago and last month, and there's no
U Lost month option for further back than

last month.
How should the data be stored? How should the data be stored? ‘Other’ is not very helpful unless
O Cloud O Cloud you know what ‘other’ is.
(0 USB flash drive O USB flash drive Your respondent won't mind, as
O Other L Other (please state) ticking 'other’ is quick and easy,

but it doesn't provide you with
anything useful.

You don't have to restrict yourself to lists of options, but you should keep questions short, with any

written responses being no more than a few words. An exception to this would be an ‘is there anything
else...’ open-ended question at the end, where people can write what they choose or leave it blank.

Your interview transcripts and/or completed questionnaires should not go in the main body of your work, but
should be added at the end, in an appendix. What should be included within your work is your analysis. In your
analysis, you will present your findings to the reader and explain the impact these will have on the development
of your system.

| believe it would be best fo incorporate access to the print function in three different places, namely in the
'file' menu, on the toolbar and as a reaction to the CTRL+P key combination [DESCRIBE]. The reason for this
e.qg. |is that the questionnaires showed that people used all three of these options (30% file menu, 50% toolbar,
20% shortcut key) [EXPLAIN]. While | could have incorporated only a toolbar option — the most popular
currently — this would make the solution less intuitive for half of the prospective users [JUSTIFY].

NEA Companion for A Level OCR Computer Science Page 8 of 50 ZigZag Education, 2020

1.3: Research of existing solutions

MARK BAND 1

List some features that
you plan to include in
your solution.

MARK BAND 2

Mark band 1 plus:
Conduct research of
similar systems and
provide evidence of

that research.
Clearly show how the
features you plan to
adopt have arisen from

|

MARK BAND 3

Mark band 2 plus:
Describe (not list) the
findings of your research,
and describe how you
might approach your
solution in light of
this research.

MARK BAND 4

Mark band 3 plus:
Research a broad and
diverse range of similar
and related solutions,
explaining why your
approach will be
influenced by each of
your findings.

the research.

Your aim is to create a solution to an existing problem, but you probably won't be the first person to try to solve
this problem. In this section, you'll have a look at previous approaches to the problem you're trying to solve.
You might examine any or all of the following:

e Computer-based solutions for the problem you're addressing
e Paper-based solutions for the problem you're addressing
e Solutions for different but related problems

(That last one is particularly important if you're working on something new and inventive.)

The following flow chart is something you should work through repeatedly. Ideally, you'll find several systems
from which you can gain ideas, and you are likely to find multiple noteworthy features from each system.

This process is not about stealing ideas, since you'll adapt your findings to meet the unique needs of

your stakeholders.

1. Find an existing system you want to investigate, identify it and include an image if possible

¥
| 2. Describe the system for the benefit of anyone who is not familiar with it
| S 9
_3. Describe a feature or characteristic you plan to adopt for your own solution
I . 4 o
4. Explain how this new feature will fit in within your solution
S . 4
[_5 Describe how you wjll alter this feature in order to customise it for your own solution]
SR S B S
6. Justify your choice, including qdc_:lressing alternative approaches which also_ might have worked ‘
. 4

7. If applicable, repeat steps 3—6 for features you are NOT going to adopt (shows you're being selective) ‘

The system currently used by most kiln operators uploads temperature readings [IDENTIFY] af regular timed
intervals [DESCRIBE]. | will need to incorporate this into my own system, because there will generally be no
one near the kiln when it is in operation, and intervals need to be set as frequently as every five seconds
[JUSTIFY]. Currently, when the user wants to see the temperature history, they have to manually refresh the
web inferface [IDENTIFY]. | will develop my own system differently, so that it continually draws the most
up-to-date history line graph, without human involvement [DESCRIBE]. Although this will require more
bandwidth, it should not present a problem, as it will be accessed over a wireless network with no data

limits [JUSTIFY].

NEA Companion for A Level OCR Computer Science Page 9 of 50

© ZigZag Education, 2020

1.4: Essential features

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4
Provide a list of some of Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
the things your Ensure you have Describe each feature, Explain why each feature
solution must do in order identified all essential treating each listed item is needed and why it is
for it to address your features, rather as a subtitle under which essential, developing
chosen problem. than some. you will provide your descriptions.
some detail.

By now, you should have a clear idea of what —
your system is required to do, so you should be Existing Your own
able to provide a list of features that must Stakeholders
be included.

You're encouraged to use your own judgment
on this, and not simply regurgitate what you
learned from stakeholders and existing systems.

For full marks, you need to state, describe t

programs judgement

and explain each of your essential features. New system

For example:

My system will require a 'create new account’ feature. [STATE] This should involve the student clicking on a
mew account’ button and entering a username and a password. The system will display o message if the
e.g. | username is already chosen, otherwise it will let them proceed. [DESCRIBE] The feature is needed because
100 new students will join the department each year, and each new student needs their own account.
Letting them choose their own username causes less work for staff [EXPLAIN].

1.5: Limitations

MARK BAND 1 ‘ MARK BAND 2 ' MARK BAND 3 | MARK BAND 4
Identify features that Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
your solution will Describe, rather than Explain why each of Show consideration of
not include, as well identify, offering detail | these limitations exists. alternatives; in your limited
as factors that as to the nature of time frame, there must be
might prevent you the limitation. features that are ruled out, and
from creating the features that were potentially
ideal solution. unviable that you'll be
including. Walk the reader
through the process
of deciding.

There are two questions to consider in terms of limitations:

1. What will your program not do that a reasonable person might suspect that it will do? For example, is it a
game that does not save player progress? Is it a revision tool that does not track test scores over time?

2. What constraints will prevent your program from being perfect? Think about software interoperability, time,
limitations in your skill set, unavailability of key stakeholders, lack of network infrastructure...

My system will not be able to work with real-time exchange rates [IDENTIFY]. One idea was that, at any stage
during the transaction being processed, the user would be able fo switch between US dollars, euros and pounds
sterling [DESCRIBE]. This will not be an option, as the most straightforward way to accomplish this would be to
pay for the data from a provider such as XE, and this is not a commercial project [EXPLAIN]. While | could
spend time writing script that would extract the data from a relevant website [DESCRIBE], this would add little to
the solution, as my stakeholder has indicated that this would not be an essential feature [JUSTIFY].

NEA Companion for A Level OCR Computer Science Page 10 of 50 © ZigZag Education, 202_0

1.6: Hardware and software requirements

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4

List some of both Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
hardware and software There should be no All hardware requirements | Justify any choices you
that the solution requires, major omissions in should be described (not have made, explaining

in terms of developing it | terms of what is needed listed), and you should why each piece of
and running it. to develop and run consider specifics, such as hardware or software

your solution. versions of software and is needed.
screen resolutions.

In order to get as far as mark band 2, you simply need a comprehensive list. Let's use the example of a desktop
data processing application, developed using Visual Basic, which interfaces with an Access database.
The following would be enough:

Hardware: Software:

® Processor clock speed of at least 1 GHz e Visual Studio 2017 (for development)

e 2 GB RAM minimum ¢ Microsoft Access 2016

e 3 GB of free hard disk space ® Windows 7 (or later) operating system
e Display capable of 1080 x 768 pixels e .NET framework (minimum version 4.5)

e Standard UK-layout keyboard

e Two-button mouse

That's it for mark band 2. If there were omissions from this list, that would nudge the score back into mark
band 1, but a list that covers everything ticks the box for mark band 2.

When it comes to the specifics, don't just make them up. The clock speed, RAM and HDD requirements should
come from the most demanding software you're going to run (Access 2017 in this case), and the resolution of

the display should come from the on-screen size of the application you're planning to make. If you're not sure
about any of these, you can always come back and fill them in once you've started development.

For mark bands 3 and 4, you need to describe, explain and justify each item on the list. There are 10 bullet
points above, so that means 10 small paragraphs, each following a similar format. Let's look at the example of
the two-button mouse:

A two-button USB mouse will be needed [DESCRIBE]. USB ports will be available in the target machine,
which is a standard-issue college laptop [EXPLAIN]. Two buttons are important, since the left button triggers
€.g. | the event of on-screen objects, while the right buton accesses a help feature for each object [EXPLAIN].
While the touch pad on a laptop will be adequate for this role, people prefer mice and tend to progress
more quickly when using them [JUSTIFY],

The first point is 'describe’ rather than 'identify’, because it's a 'two-button mouse’ rather than simply a ‘'mouse’.
For the 'justify’ point, an alternative approach has been genuinely considered.

NEA Companion for A Level OCR Computer Science Page ll_of 50 © ZigZag Educati:)n_, 2020

1.7: Success criteria

MARK BAND 1

Provide a checklist
against which you will be
able to evaluate your
finished solution.

MARK BAND 2

Mark band 1 plus:
Ensure that each item on
your checklist can be
measured in some way,
and describe how each
item will be measured.

MARK BAND 3

Mark band 2 plus:
Your checklist should
cover all aspects of the
proposed solution.

MARK BAND 4

Mark band 3 plus:
Each item should be
justified, with reasons
given for its inclusion, its
threshold and the means
of measurement.

Here, you're putting together a list of statements that will be used to measure your solution once you've finished
working on it. It's best thought of as your own private mark scheme, in which the perfect solution will score
100%. You should accept that you won't actually score full marks, but it should still be realistic, and you should
aim for each criterion. Each one should be achievable independently of the others, and be separately measurable
and justified.

Probably the best way to understand a good success criterion is to have a look at some bad ones:

Attempt Problem

Admirable, but there's no mention of

| should have a user-friendly interface .
how to measure this

Better, but we need to know something
more about this questionnaire

1 should have a user-friendly interface, which will be measured by
giving stakeholders a questionnaire after they have used it

Here we have the matter resolved of
how this will be measured, but we still
need a pass mark of some kind

There will be a question 'rank the usability of this application on a
scale of 1 to 10’

This is now measurable, so all that's
needed now is a justification

In order for the solution to be a success in terms of usability, the score
should be either 9 or 10

| should have a user-friendly interface, which will be measured by
giving stakeholders a questionnaire after they have used it.

There will be a question 'rank the usability of this application on a
scale of 1 to 10". In order for the solution to be a success in terms of
usability, the score should be either @ or 10. | have chosen a
questionnaire because there is no objective way of measuring
usability, and | have chosen a threshold of 9—10 because the main
problem with the current system is a lack of user-friendliness.

Perfect. This is described, explained and
justified. It's also measurable, which
means there won't be any lack of clarity
later on, when you're deciding whether
or not you've succeeded in this regard.

Most other success criteria will be easier to define, as there will be less of a 'human factor' about them.
You might aim to have a feature for a new user to create a new account. This could be evidenced simply by
testing that the 'new account’ part of the solution works.

l

The success criteria section is important, as it forms the basis of the evaluation at the end of the project.

You will need to provide an assessment, for each criterion, of whether you met it, partially met it or failed to

meet it.

As such, you would benefit greatly from numbering your criteria.

NEA Companion Er A Level OCR Computer Science Paée 12 of 50 © ZigZag Education, 2020

Analysis » Checklist V

MARK BAND 4: 9-10 MARKS

0 Features that make this problem appropriate to approach using computational methods (such as
abstraction and decomposition) are identified, described, explained and justified

O Analysis of stakeholder requirements is presented, typically as a result of interviews and/or questionnaires,
and the way in which a solution is about to be developed is described and explained

O There is in-depth research covering multiple similar or related solutions

O Research into similar or related solutions has provided insights on how to proceed, which are described,
explained and justified

O Essential features are identified and described, and there is clear explanation of why they are essential

O All limitations on the solution are clearly described, explained and justified

O Every piece of hardware and software required is described in full, and its inclusion within the list for the
purposes of the solution is justified

O Success criteria are measurable, with the means of measurement clear, and each one is justified; the
success criteria cover the proposed solution in its entirety

MARK BAND 3: 6-8 MARKS

O Features that make this problem appropriate to approach using computational methods (such as
abstraction and decomposition) are identified, described and explained, but not justified

O Analysis of stakeholder requirements is presented, typically as a result of interviews and/or
questionnaires, and the way in which a solution is about to be developed is described and explained

O There is in-depth research covering multiple similar or related solutions

O Research informs descriptions of how (but not why) the problem will be approached

O Essential features are identified and described, but not explained

O ALl limitations on the solution are clearly described and explained

O Hardware and software requirements are specified in full

[0 Measurable success criteria are stated and cover the proposed solution in its entirety

MARK BAND 2: 3-5 MARKS

O Features that make the problem appropriate for computational methods are described, but
not explained

O Description of how stakeholders will use the system is included, supported by some investigation

O Features from researched similar solutions that might transfer to your own are identified

O Essential features, limitations and most hardware/software requirements are identified

[0 Success criteria are identified, which must still be measurable

MARK BAND 1: 1-2 MARKS

O The computational methods section is characterised by identifying applicable features, rather than
describing them

0 Stakeholders, and some of their needs, are identified, but not necessarily described

O Appropriate features are identified for incorporation into your solution, but this may or may not be based
on any kind of research

O Essential features, limitations and some hardware/software requirements are identified

O Success criteria are identified, although they might not be measurable

NEA Companion for A Level OCR Computer Science Page 13 of 50 © ZigZag Education, 2020

2: Design (15 marks)

In the design phase, you plan the development of your solution. This covers data structures, interface features,
algorithms and planning out exactly how you will test your solution, both during and after development.

If you have conducted your analysis properly, with meaningful examinations of existing systems, and interactions
with real stakeholders, this section should be quite straightforward. The aim is to design a system that the
stakeholders want, that builds on the strengths of existing systems.

Mark band 1 1-4 marks
Mark band 2 5-8 marks
Mark band 3 9-12 marks
Mark band 4 13-15 marks

Obviously, your solution will not resemble your design precisely. You will change your mind about how
best to proceed, and you're likely to add, remove and change quite a few things. You do not need to

revisit your design to make retrospective changes when this happens, but you should keep a log of
changes that you make once you're developing. It can lead to a greatly enriched evaluation.

2.1: Problem decomposition

Note than you are decomposing the problem here, and not the solution. This part is essentially where the
analysis gives way to the design, so you're showing that you understand the current situation.

MARK BAND 1 | MARK BAND 2 ‘ MARK BAND 3 | MARK BAND 4
Problem decomposition is Break the problem into Mark band 2 plus: Mark band 3 plus:
not required for mark smaller sub-problems, Add explanation to your Offer justifications, by
band 1. describing what you're descriptions, talking presenting alternative
doing at each stage. about why you've gone ways in which the
about this process in a problem could have
particular way. been decomposed,
explaining why you
favoured your approach.

As an example here, we're going to use the problem of setting and assessing homework questions for an A Level
Computer Science class at a sixth form college with a policy of assigning weekly homework.

A hierarchy diagram is optional,
Homework o .
program but it is a great tool for showing
how a large problem can be
I E I broken into a series of smaller
_ ' problems. This has just two
Wiite Assign 4SS layers, but for larger problems,
questions homework homework . . -
with multiple decomposition
phases, there's no upper limit.

NEA Companion for A Level OCR Computer Science Page 14 of 50 © ZigZag Education, 2026

Write questions: Currently, the teacher writes a series of topic-based
questions, with each topic in a separate Microsoft Word document (i.e. one
document for binary, one for hardware, one for operating systems, efc.).

Assign homework: When homework is assigned during the first class of the
week, questions are chosen from all fopics covered so far that year, and
copied and pasted into a new Microsoft Word document. This is uploaded
to the VLE along with an upload link for students.

Assess homework: Student files are downloaded by the teacher, they are
manually marked and grades are uploaded on the VLE so that each student
can see only their own.

[have broken the problem down by process rather than by user
(student/teacher), as it lends itself better to creating a solution. This is
because my solution will be broken down into processes (algorithms) and not
by who's using the system.

2.2: Structure of the solution

This is a detailed description of
the problem. More importantly,
it's a detailed description of the
pieces into which the problem has
been decomposed. Each piece
has been described clearly.

Here, explanation and
justification are demonstrated.
The way in which the problem
has been decomposed is
explained, and a viable
alternative (breaking the problem
down by user) is also examined
but ultimately rejected.

It's easy to confuse part 2.1 (problem decomposition) with this part, and people often approach the two parts at

the same time.

This is fine, but you need to bear in mind that in 2.1 we break the problem into its constituent parts, whereas in
2.2 we start to showcase the parts of the solution. Unless your work addresses both the problem and the ‘

solution, you will be unable to gain full marks for the design.

MARK BAND 1

MARK BAND 2

MARK BAND 3

MARK BAND 4

Structure of the solution is
not required for mark
band 1.

Show how the parts of
the proposed solution
relate to each other.

Mark band 2 plus:
Your work should be
comprehensive and cover
all aspects of your
solution, whereas mark
band 2 allows for
some gaps.

The wording in the mark
scheme is identical for
mark bands 3 and 4, so the
emphasis is on
providing detail.

It might seem tempting to create identical hierarchy diagrams for the problem and the solution.

! They will probably have many commonalities, but if they are exactly the same, that suggests that your

solution doesn't contribute anything new.

No justification is required by the mark scheme for this part; you simply need to present the structure of the
proposed solution. Assuming you can fit the hierarchy diagram for your solution on a single page, it might look
like this (of course, each of your shapes will contain text, depending on what they are denoting):

NEA Companion for A Level OCR Computer Science

Page 15 of 50

© ZigZag Education, 2020

This is the name of your entire system. In this instance, it might be 'homework system'.

2. Atthe first level of decomposition, the solution is divided up into major subsystems. In this case, there might
be a student subsystem (to complete homework) and a staff subsystem (to set homework and monitor results).

3. This tier might represent forms or individual web pages (if applicable). For the staff view, this might be
divided into 'write questions’, ‘assign homework' and ‘assess homework'.

4. At the bottom are the individual subroutines that make up each form. For example, in assessing homework,
there might be a subroutine called 'save_mark’and another called 'download next'.

With no justification needed in this part of the write-up, top marks are generally awarded to candida
| who define their solution in detail. This means breaking down each part into individual subroutif

well as creating a design that covers everything mentioned in 'essential features' (1.4) from yg

If you need to, split your diagram across multiple pages rather than reducing font size or mj

4
()

Decomposition has taken place, but *
enough. Each terminal node (sub
any further) should be straight”

Either:

e given your stru-
would progr

T
i
[
]

=
|=———
=

]
= ——
===

1
: other an”’
==1 ==y ==y ==y ==y ==y
1 1 1 1 1 1)
- N T SO0 S O S T B
e anyd
be equa

NEA Companion for A Level OCR Computer Science Page 16 of 50

Some tasks are decomposed in detail, but others are missing.
Check your structure diagram against the task.

-
1
: Does your structure diagram contain the following?
[]

'-IL }'l e Everything from your 'essential features' (1.4)
=4
L

e Everything from your 'success criteria’ (1.7)

You have included tasks that cannot be traced back to your
analysis. There is no upper limit to how substantial a solution
you can develop, and it's not uncommon for a solution to change
from design to development. In fact, it probably will change.

?

|- -I |- _| |_ -I The nature of the solution shouldn’t change between analysis
and design. If it does, that probably means your essential

? ?) features section, or your success criteria section (or both)

are incomplete.

2.3: Algorithm design

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4
Describe how individual, Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
algorithm-level elements Adhere to standard Include commentary with | Offer alternatives to how
of your solution will work. algorithm conventions each algorithm, explaining | individual algorithms are

using flow charts or how it fits in with the rest | designed, and how they

pseudocode, and ensure all of the solution. interrelate, explaining why
algorithms are designed. you ultimately made the
decisions that you made.

There is no specification in the mark scheme as to the format in which algorithms should be designed. Algorithms
are normally presented in the form of flow charts, pseudocode, actual program code and structured English.

Of these options, the favoured two are pseudocode and flow charts. Structured English, unlike these two, does
not follow a standard format, and program code, in this coursework, is assessed elsewhere, so you shouldn't use
it here as well.

mEA Companion for A Level OCR Computer Science Page 17 of 50 © ZigZag Education, 2020.

Flow chart shape Usage

Terminator

Only two of these appear in each algorithm - one saying 'start’
and one saying 'end’. If your algorithm splits off into multiple
paths, they can all come together at the 'end’ terminator.

!

Process

Unless an action involves input, output or storage, it probably
belongs in this shape. Process shapes are commonly used for
calculations as well as declaring/initialising variables.

Decision

yes no Used in place of an IF statement. The text content of a decision
should be a yes/no question. The IF part of the algorithm then
follows from the 'yes' arrow, with the ELSE part following the
'no’ arrow.

Input/output

Items input from the user or output to the display are depicted
using one of these shapes, which will contain 'input’ or ‘output’
accordingly, as well as the name of the variable.

Document

This is most likely to be used if your solution is going to create
printed output, but it can also work as an input, particularly if a
document is being scanned or transcribed. It would be used in

place of the input/output shape.

Stored data

This will represent files that are read from or written to, which
might be text files, binary files, databases or whatever else your
solution will work with.

Connector

If you need to split a large flow chart over more than one page,
you'll use connectors. At the bottom of page 1, your flow chart
will end with a connector containing the letter 'A". The flow chart
would continue from whichever other page begins with another
‘A’ connector.

Predefined process

This is the shape you'll use for one flow chart to 'call’ a subroutine
defined by another flow chart. The name of the subroutine being
called should go into the shape, and an algorithm with a
corresponding title should be defined elsewhere.

There are several tools that can help you to draw flow charts, but | would strongly recommend a website

! called 'draw.io’. Anything you create can be automatically saved in the cloud, and it tends to be far
quicker to work with than general purpose software such as PowerPoint.

NEA Companion for A Level OCR Computer Science Page 18 of 50 © ZigZag Education, 2020

Here is an example of a flow chart that deals with an attempt to log into a system:

Algorithm: logon

C Start)
'

Input:

username

A 4

Input:

password

length of
username
>0

Yes No

length of
password
>0

Yes

/ User
. \ accounts
Yes username & No
password
match?
Output:
open_main “invalid
logon"

v
C D)

In order for this flow chart to be valid, several other pieces would need to be in place throughout the rest of
the work:

* Another algorithm, called 'open_main’, would need to be designed

e Afile called 'User accounts' would need to have been designed in section 2.5

e Variables called ‘username' and 'password' should also be designed in section 1

NEA Companion for A Level OCR Computer Science Page 19 of 50 © ZigZag Education, 2020

An alternative to the flow chart would be pseudocode (for OCR's pseudocode syntax, see their specification on
their website):

public procedure logon ()
username = input ("Username: ")
password = input ("Password: ")
if username.length < 1 then
print ("invalid logon")
elseif password.length < 1 then

print ("invalid logon")

else
results = SQL.run("SELECT * from user accounts WHERE U NAME = '" +
username + "' AND P WORD = '" + password + "'"
if results.length > 0 then
copen_main ()
else
print("invalid logon") '
endif
endif
endprocedure

The flow chart and pseudocode shown here perform the same task. You are not required to do both, and

® | are unlikely to gain any marks by doing both, though you will lose time.

Every terminal node in your hierarchy diagram from part 2.2 (assuming you approached 2.2 with a hierarchy
diagram) should have an algorithm to correspond to it. The diagram in this guide has 18 terminal nodes, so there
would be either 18 flow charts or 18 sets of pseudocode (or a combination of the two). The names of the
algorithms should correspond with the names written or typed onto the terminal nodes.

Admin

logon

open_main

. etc.

For full marks in this subsection, you need to justify how these algorithms fit together to make the complete
solution. To put it another way, why did you choose to create these particular algorithms when other
combinations might have been suitable?

| decided to create a separate, self-contained logon subroutine [DESCRIBE], since this aids modularity and
maintainability [EXPLAIN]. If a new logon system were to be developed, such as using RFID cards, only this
e.g. | subroutine would need to be rewritten [DESCRIBE]. Had I incorporated this into o larger ‘admin’ subroutine
instead, subsequent maintenance would have been more difficult, as any code that needs to be changed
would first need to be located within a larger body of code [JUSTIFY].

Providing a justification for each individual algorithm should see you safely into the top mark band.

NEA Companion for A Level OCR Computer Science Page 20 of 50 © ZigZag Education, 2020

2.4: Usability features

MARK BAND 1

MARK BAND 2

MARK BAND 3

MARK BAND 4

List some of the features
your solution will employ
to make your program
accessible to all and
user-friendly.

Mark band 1 plus:

Provide a full list of such
features, and add
descriptions to each
of them.

Mark band 2 plus:
Explain specifically why
each feature has been
included; what is
its purpose?

Mark band 3 plus:

Offer a justification of the
chosen features, to
include explanations of
alternative approaches
which you ultimately did
not adopt.

You are not required to design screen layouts, but you might find it a useful preliminary step to help you to
identify the usability features you intend to use. They can also reduce your word count, since fewer words are
needed to show, for example, a search utility than to describe it.

Usability features include the following:

e Use of colour, including text, background, buttons, etc.
e Use of a consistent layout, in which you specify the positions of each element on the screen (e.g. the 'OK’
button always goes in the bottom right, a help button is available on all screens in the top right)

° Use of icons

e Accessibility features, such as settings to change font size, colour combinations and language
e Any other approaches you might take to make the solution user-friendly

For full marks, you need to identify, describe, explain and justify all of the features you plan to use:

On my main menu bar, | intend to use tooltips on each of the icons [IDENTIFY]. When you hover over any
of the ‘new’, ‘open’, 'save', ‘print’, 'close’ or 'help’ icons, the word that denotes that button's purpose will
appear in a temporary box that disappears when the cursor moves on [DESCRIBE]. This feature will be used
so that users can be sure of the purpose of the button they're about to click before they click it [EXPLAIN].

| did consider using text buttons, but they take up more space than is available, besides which most people
are familiar with the standard icons for each of these processes [JUSTIFY].

2.5: Variables and validation

MARK BAND 1

Provide names and, where
applicable, data types of
the most important
variables and data
structures (such as lists,
arrays, classes and
database tables and
text files).

MARK BAND 2

Mark band 1 plus:
Identify any validation for
any variables or
data types.

MARK BAND 3

Mark band 2 plus:
Justify the existence and
nature of each
variable / data structure,
e.g. ‘why is it necessary?’,
‘why is it an integer?’,
‘why is it an array?’

MARK BAND 4

Mark band 3 plus:
Include justifications for
all data validation as well,
including why a data item
needed any validation at
all, and why a particular
validation type
was chosen.

It's not just variables that need to be designed in this section, but anything that can store one or more pieces of
data. This includes variables, data structures (such as arrays), classes and external files. Given the somewhat
formulaic way in which you will describe each variable in turn, a table is probably the most sensible approach:

NEA Compa;wion for A Level OCR Computer Science

Page 21 of 50

© ZigZag Education, 2020

Variables

Name Data type Scope Purpose
L L} L}
. ocal to Fhe logon N/A - local The password of the
password String subroutine of the .
variable current user
User class

userID String Attribute of User class | Private, non-static dliic 1B giFthe
current user
T T Integer Attribute of the Log Public, static Total number

module of users

When it comes to justifying decisions here, you can justify the very existence of a variable (why do we need a
userlD at all?), and you can justify some property of a variable (why is it a string, or why is it private?). Given the
large number of variables you're likely to have, you should not aim to justify every property of every variable.
Instead, you should offer justifications whenever you were presented with a genuine choice. You should also
divide your variables into separate tables, with one table per class, module or form.

Data structures

Name Data type Scope Purpose
An attribute of the A 10-element array to
arrScores Integer array i ;
game' class store top 10 scores

Stores login names and
passwords of all
current users

N/A: this is outside the

dtbUsers Access database
bounds of the program

In this instance, the Access database would also require a table of its own, since it would contain fields of various
purposes and data types. ‘Scope’ would not be required in such a table, as it is not part of the program, but an
external file.

Class diagrams

Character

- energy: integer
- name: String
- 1sEnemy: Boolean

+ move(): void
+ guard(): void
+ getEnergy(): integer

Again, there is plenty here to justify. Why is ‘energy’ an integer? Why is it private instead of public? Why does
the 'move’ method have a void data type? Why do we even need a ‘character' class? How else could this have
been done?

() ‘ Try not to repeat yourself too much when working on this section. If several classes function in similar

- ‘ ways, consider grouping them together alongside a single justification.

NEA Companion for A Level OCR Computer Science Page 22 of 50 © ZigZag Education, 2020

Data validation

It is critically important that your solution involves some form of data validation. Without it, marks can

be lost in each of the design, implementation and testing stages.

You're not expected to provide validation routines for every individual variable. In fact, if you were to validate
unnecessarily, you'd be quite likely to lose marks, as the top-band mark scheme says you should be ‘justifying
and explaining any necessary validation’. The inclusion of any unnecessary validation would prevent you from
getting the top mark here.

You might make use of any of the following:

e Presence check - ensuring that the user has entered something

e Range check - ensuring that a date or number is above a lower bound, below an upper bound, or between
an upper and a lower bound

e Length check - ensuring that an acceptable number of characters has been entered

e Type check - ensuring that only data of the correct data type (e.g. integer) is entered

e Format check - ensuring that input matches an acceptable sequence of character types, such as for a
National Insurance number

e Lookup check - ensuring that any data item entered exists on a list of valid data items

e Any combination of these, as multiple validation checks can be assigned to a single data item

As in other sections, you need to identify, describe, explain and justify your selection:

For the user's email address, | will apply a format check [IDENTIFY]. There will need to be an @ symbol
within the entry, but this should not be at the start or the end. There should also be at least one dot after the
@ symbol, which should also not be at the end [DESCRIBE]. This is a suitable check because all email
e.g. | addresses follow this convention, with a domain following the @ sign consisting of at least one dot
[EXPLAIN]. | could have also implemented a length check, but the format check will catch any email
addresses that are too short, and | am not aware of any upper limit to the number of characters in an email
address [JUSTIFY].

2.6: Iterative test data

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4
Identify data that will Mark band 1 plus: Mark band 2 plus: The wording in the mark
later be used for testing | Expand the range of test For each piece of test | Scheme is identical for mark
the solution during data so that the entire data, explain why it is bands 3 and 4, so the
development (i.e. not | solution can be tested ina | needed; what exactly is | €mphasis is on providing

after development). way that examines all | the purpose of each test? comprehensive test
interactivity, functionality coverage and justification.
and validation.

You need to plan out your test data in advance, and there should be test data for each subroutine. Test data
should fit into categories of typical, boundary and erroneous. To illustrate each of these, let's take the example
of a system that allows estate agents to list houses for sale that have between 1 and 10 bedrooms:

NEA Companion for A Level OCR Computer Science Page 23 of 50 © ZigZag Education, 2020

Typical

Boundary

Erroneous

3, 4, 6

Each of these is an acceptable
number of bedrooms for this
system, and there is no need to test
every possible input value.

0o, 1, 10, 11

The values of 1 and 10 are valid,
but just barely. These are being
tested to ensure that the system
accepts them.

The values of 0 and 11 are invalid,
but again just barely. These are
used to test that the correct error
messages appear.

-4

Negative numbers should not be
accepted by this system.

Five

This is a string, so should also not
be accepted.

" "

Entering nothing at all is a sensible

test, as it can often crash a program.
3.4

While this is within the acceptable
range, it is not an integer, so
should be rejected.

As you describe each piece of test data for each subroutine, you should explain why it's needed. You might find
it useful to organise your test data into a table (as below). This can help to ensure you don't miss anything out.

Subroutine Field Data Explanation
sell house SR E s e e s 1 This is'boundary data. It is just about
- - = valid, and should be accepted.
Also boundary data; this is barely
sell house number of bedrooms 11 outside the valid range, but should
trigger an error message.
While in the acceptable range, this is
sell house number of bedrooms 3.4 Hie V\{rong dataiypeso shoulduiigge
= = = a different error message from the
previous test.
2.7: Post-development test data
MARK BAND 1 ‘ MARK BAND 2 | MARK BAND 3 MARK BAND 4

Post-development test data
is not required for mark
band 1, provided that it has
been provided for 2.6 -
iterative development.

If not, see mark band 2 2>

Identify data to be used in
testing after the solution
has been completed.

Mark band 2 plus:

For each piece of test
data, explain why it is
needed; what exactly is
the purpose of each test?

The wording in the mark
scheme is identical for mark
bands 3 and 4, so the
emphasis is on providing
comprehensive test
coverage and justification.

This is test data that will be applied after development has completed, unlike the previous section which is used to
test the solution as it is being developed. You can use exactly the same approach, and should justify each set of

test data.

The main difference is that here you're testing the whole program, whereas in section 2.6 you're testing each part

in turn.

Testing is not something that is considered only when coding is complete. You need to design your tests,

conduct testing as you develop, conduct testing post-development and finally evaluate the outcome of

testing. You are advised to look ahead to sections 3 to 6 in order to better plan your tests.

NEA Companion for A Level OCR Computer Science

Page 24 of 50

© ZigZag Education, 2020

Design » Checklist V

MARK BAND 4: 13-15 MARKS

O The problem has been broken down in a systematic manner, such as using a hierarchy chart, and there is a
clear explanation of why the problem was broken down in the way that it was broken down

O The structure of the solution is defined down to the level of each algorithm, with clarity in terms of how
the algorithms relate to each other

O Every individual algorithm, as identified by the point above, is defined using either pseudocode or a
flow chart

O The presence of each algorithm is explained and justified, to make it clear why it is incorporated into the
solution in the way it has been incorporated

O All usability features are identified, described and explained, with choices justified

0 All key variables and data structures are identified, described and explained, with choices justified

O All validation is identified, described and explained, with choices justified

O Test data that will be used during iterative development is outlined in detail and justified

O Test data that will be used after iterative development, as a basis for evaluation, is outlined in detail
and justified

MARK BAND 3: 9-12 MARKS

O The process of breaking down the problem is explained, and is still expected to be systematic, but without
the justification

O The structure of the solution is specified down to the level of each algorithm

O All subroutines need to be defined using either pseudocode or a flow chart, and their place in the solution will
be explained, but there is not a justification as to how they fit in with the rest of the solution

O Al usability features are described and explained, but not justified

O All key variables are described and explained, but not justified

O All validation is described and explained, but not justified

O Test data that will be used during iterative development is outlined in detail and justified

O Test data that will be used after iterative development, as a basis for evaluation, is outlined in detail
and justified

MARK BAND 2: 5-8 MARKS

O The problem is broken down into smaller problems, with commentary on this process as it happens

O The structure of the solution is defined, although there may be gaps or errors, and it may not be broken
down to algorithm level

O All algorithms are defined in pseudocode or flow chart form, but there is no additional work provided to
explain or describe these algorithms

O The variables are identified, as are necessary validation routines

0 Usability features are described

O A range of iterative test data is defined

O Arange of post-iterative test data is defined

MARK BAND 1: 1-4 MARKS

O There are some algorithms defined using at least an attempt at a standard convention

O Some usability features are described, but there could be gaps

O The variables are identified

O Some test data is presented for either the iterative phase or the post-iterative phase

NEA Companion for A Level OCR Computer Science Page 25 of 50 © ZigZag Education, 2020.

A Level | OCR | H446

NEA Companion

for A Level OCR Computer Science

R Lee

zigzageducation.co.uk [k
10096

Publish your own work... Write to a brief...
Register at publishmenow.co.uk

Photocopiable/digital resources may only be copied by the purchasing institution on a single site and for their own use

3: Iterative Development (15 marks)

One of the dangers, especially for talented programmers, is the temptation to keep on developing until the
solution is complete. While that might result in a good-quality program, it could cost you some marks, because
you can only get credit for what you document.

Iterative development entails making part of the solution, or a version of it, then testing it, documenting the
tests, reflecting on what you have done, then moving on to the next part or the next version. It's a cycle, and it
needs to take place in tandem with section 4, iterative testing. For this reason, you should aim to complete
section 3 and section 4 at the same time, rather than as separate sections within your coursework.

Mark band 1 1-4 marks

Mark band 2 5-8 marks

Mark band 3 9-12 marks

Mark band 4 13-15 marks

Overview:

s D

v

Describe what you're
about to do

v

Write some code

v

Copy the key code into
your work

v

Describe, explain and

justify it
Test it and n Make and
document the tests i document changes

A

Did it work?

Y

Review this
iteration

Yes Final No
iteration?

4

B D

NEA Companion for A Level OCR Computer Science Page 26 of 50 © ZigZag Education, 2020

3.1: Iterative development stages

It cannot be overstated that you should not simply create a program, from start to finish, and submit it. As this is
not an iterative approach, you would not even get into mark band 1. Instead, you should aim to produce the
program piece by piece, documenting as you go.

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4
Provide some evidence Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
that d(?velopm.ent Of the | Add descriptions of each | Ensure coverage of every | Whenever your evidence
solution was iterative. | jterative stage, and make | stage of development, | shows that a decision was
sure most or all stages are providing a link to the made, describe the
covered by your evidence. | breakdown provided in necessary decision and
sections 2.1 and 2.2. justify your choice.

Include evidence of more Evidence of prototypes
than one prototype at should be submitted for
intermediate stages. each iterative stage.

The flow chart on the previous page shows how each iterative development stage should be addressed. In the
design phase, you will have broken your solution (the problem too, but this is about the solution now) into
pieces, and each of those pieces is one iterative development stage.

There is no straightforward answer to the question 'how many iterative stages do | need?" |t depends on

! the pieces that make up your solution. Even then, it's possible to do a large number of small cycles, each
focusing on a smaller part of the solution, or a smaller number of large cycles. Either is valid.

A. Here, the first iterations would be '1', then
'2', followed by combining them together in ‘3.

The rest of the subprograms would be
similarly tested and developed, giving 10 3 6 9
cycles (including a final one that brings all of
the parts together).

B. In this approach, cycle '1' covers that node as
well as the associated child nodes.

This would result in four cycles (again, including
a final one that brings the pieces together), but
each cycle would include more commentary,
more code and more testing.

NEA Companion for A Level OCR Computer Science Page 27 of 50 © ZigZag Education, 2020

Let's consider this with the specific example of a register subsystem:

Register Subsystem

Register

Login

Record attendance

Data analysis

Get classes

Extract from DB

Draw dashboard

Calculate percentages

A. We could develop and test the ‘login’ subsystem, then the 'get classes' subsystem, then the ‘record attendance'
subsystem, before finally assembling the 'register' subsystem, which contains all of these other parts.

B. Alternatively, we could spend a longer time developing the ‘register' subsystem as a single element, without
first developing the subparts.

There is no single 'best’ way to conduct or document your development, but the following pointers should

be observed:

e Describe everything you're doing and explain why you're doing it - there should never be a screenshot in
your work without associated text

e Provide evidence in the form of code and screenshots throughout each stage
e Ensure that any code you include is fully commented

NEA Companion for A Level OCR Computer Science

Page 28 of 50

© ZigZag Education, 2020

3.2: Modularity

MARK BAND 1 MARK BAND 2

Show clear evidence of
structure, along the lines
of subroutines, loops
and/or classes.

Modularity is not required
for mark band 1.

MARK BAND 3

Mark band 2 plus:
Ensure that your program
is modular and clearly
signpost the features that

MARK BAND 4

Mark band 3 plus:
Evidence of good-quality
program structure, which

is also well signposted.

make it modular.

You are not required to have a separate 'modularity’ section of your work; you are simply expected to demonstrate
modularity in your solution, with evidence of it provided in each iterative cycle.

It's beyond the remit of this resource to teach you how to incorporate good structure and modularity into your
work (especially as you have a choice of languages), but here are some examples of modular, well-structured code:

Modular and well structured

Not modular and poorly structured

Breaking your program into separate, self-contained
pieces (called, generically, modules), which can be
independently tested.

A single, typically quite long, body of code, which
cannot be tested until the whole solution is complete.

Code that is frequently needed is placed into
subroutines and called whenever required.

Completely identical sections of code can be found
within the solution.

Iteration is used whenever a single activity is to be
repeated or when a very similar sequence of activities
are required in sequence.

Solution is characterised by sections of code that have
been copied and pasted, then slightly changed.

Arrays, trees, other data structures and your own
custom-written classes are used to store data.

Large numbers of variables are used in situations in
which they each have a very similar role to one another.
NB Variables are not '‘bad’ - in countless cases, they're
the right tool for the job, but if 20 variables, similarly
named, perform a very similar task, a 20-element
array might have been a better choice.

Attributes and constants are located together within
the code, giving any subsequent developer easy
access to them. Those attributes and constants are
then used in calculations throughout the code, rather
than the string/numeric literals.

String and numeric literals are used throughout the
code, which makes maintenance very difficult. |f your
solution were to, for example, calculate VAT, there
should be a constant of that name, set to 0.2 (VAT is,
at time of writing, 20% in the UK). There should not
be countless instances of 0.2 throughout the code.

Classes have private attributes and variables are local,
passed as parameters whenever required.

Classes have public attributes and global variables are
used in place of parameter passing.

Classes demonstrate high cohesion - each class
models the behaviour of a single real-world
equivalent fully, without including code that's not
relevant to the class.

Classes may not be well defined. A 'student’ class, for
instance, might represent aspects of teachers, classes
or rooms, rather than those pieces of functionality
belonging to separate 'teacher’, ‘class’ or 'room’ classes.

Classes demonstrate loose coupling - data shared
between classes is kept to the minimum of what
is necessary.

Classes demonstrate tight coupling, with parameters,
return values and public attributes sharing more than
is needed.

Ultimately, modular programming works in your favour.

Not only does it gain you marks, it also means you

have to produce fewer lines of code. That means less time spent documenting your work and fewer

opportunities for mistakes.

Even though there's no discrete 'modularity’ chapter in your work, you should make a big deal of the
features that make your work modular. In the iterative development section, whenever you have

produced code that shows characteristics of modularity, draw the reader's attention to it. Describe the
feature you have used, describe alternative approaches you might have taken, and justify yourself = why

did you do it this way?

NEA Companion for A Level OCR Computer Science

Page 29 of 50 © ZigZag Education, 2020

3.3: Annotation

MARK BAND 1

MARK BAND 2

MARK BAND 3

MARK BAND 4

Annotation is not required
for mark band 1.

Code must include some
comments, which will

Mark band 2 plus:
Comments must extend to

Mark band 3 plus:
Comments must be

focus on the most
important elements.

at least one per
subroutine and one
per variable.

included throughout
the code, and must be
of use to any
subsequent developer.

Annotation does not require its own section in your work, and you do not even need to signpost it. You will be
assessed on the comments/annotations as they exist in your code.

The question most commonly asked is 'how much do | need to annotate?' This is a difficult question to answer,
as much of it depends on how the person marking your work interprets the mark scheme. The phrasing ‘code will
be annotated to aid future maintenance of the system’isn't conclusive, so asking the person who will mark your
work would be a useful move.

There is no such thing as too much annotation, but you don't want to spend hours adding unnecessary comments

that might not be worth any marks. The following should always be commented, assuming you're aiming for

mark band 4:

e Every subroutine, typically with a comment on the line above the declaration, covering what the subroutine
does, what other subroutines it calls, where it is called from itself and details of parameters and return values

e Every variable, with a comment either immediately above it or to the right of it, explaining its purpose

e Any sections of code that are key to the subroutine, or that are complex enough to require explanation.

For example:

'Main method (start of program), which calls ‘QuickSortRecursive'
'No parameters
Sub Main()
'array to be sorted, including positives, negatives and duplicates
Dim data() As Integer = {-1, 25, ©, -58964, 8547, -119, 25, 0, 78596}
‘Call to 'QuickSortRecursive', passing the array, with left and right pointers
QuickSortRecursive(data, ©, data.Length - 1)
'Display each value in the sorted array on a new line
For x = @ To data.Length - 1
Console.Writeline(data(x))

O 0 N OV B W B

Next
'Pause execution before closing
Console.ReadlLine()

End Sub

Note that not every single line is commented, even in this very short subroutine. A single comment is enough to
cover the loop on lines 9-11, but the declaration has two lines of comment.

Your target audience for this activity is any subsequent programmer. They should be able to understand what
each part of your code does, without reading any of the actual code.

Some languages offer facilities for marking multiple lines as comments at the same time. Where these

features exist, such as in Java or C#, they should be used.

NEA Companion for A Level OCR Computer Science Page 30 of 50 © ZigZag Education, 2020

3.4: Naming conventions

MARK BAND 1

Naming conventions is not
required for mark band 1.

MARK BAND 2

Some names for variables
are appropriate in that
they are self-documenting

MARK BAND 3

Mark band 2 plus:
Extend the self-
documenting naming and

MARK BAND 4

Mark band 3 plus:
Ensure that everything
that can be named is

standard convention to
most variables and
data structures.

and follow some form
of convention.

given a consistently styled
self-documenting name.

As with annotation, credit for naming conventions will be given purely on the basis of your code. Anything for
which you choose a name can influence how well you score in iterative development, including the following:

e Variables

e (lasses

e Files

e Field names within files
e Forms

e Form controls such as buttons and text boxes

Good Names Bad Names Explanation

Ignoring the fact that ‘input’ is a reserved word in some
languages, this is not a meaningful enough name, as the user
might input several things as the program runs.

levelInput input

Nobody wants variable names to fill up the screen, but a
longer-than-average variable name is less of a problem than
a variable name that has a purpose you can't remember.

playerlScore pls

Default names (such as '‘Buttonl’) are only appropriate by
coincidence, such as if this button were a calculator button
with a value of '1. When it comes to form controls, employ a
convention (such as prefixing all buttons with 'btn' and all
text boxes with 'txt’), and use that convention consistently.

btnOK Buttonl

There's no reason to get anything other than full credit for naming conventions, as a bad name takes
about as much time to type as a good name. Given the fact that, other than the code itself, you don't

need to submit anything under 'naming conventions', this might be the easiest part of the project in
which to pick up marks.

NEA Companion_fo; A Level OCR Computer Science Page 31 of 50 © ZEZag?ducation, 2020

3.5: Validation

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4
Some attempt at validation Mark band 1 plus: Mark band 2 plus: Mark band 3 plus:
is required to reach the Basic validation The majority of data that Validation routines,
upper ranges of mark band 1. | should be included can be subject to appropriately chosen
and signposted. validation is validated, and implemented, should
and validation routines be applied throughout
are appropriate to the solution,
the data. wherever applicable.

The word 'validation' is mentioned in the design section as well as the implementation section. In post-

development testing, the word 'robustness' also involves validation. If you've chosen a project where
validation cannot be implemented at all, you will lose marks.

It's possible to pick up full marks for validation simply by submitting your code. However, in order to make life a
little easier for the person marking your work (and to reduce the likelihood of some of your hard work being
overlooked), you are strongly recommended to signpost it. This would mean including a 'validation’ subsection
in each iterative cycle in which validation has been implemented.

Validation type When to use it

This ensures that the user enters some data, without any consideration of what that
Presence check data is. A review might use this type of check, since it can be any length, and can
include any type of character.

Useful with numbers or dates, where data values must be below/before a certain
value, or greater than / after a certain value (or both). Useful to prevent wildly
inappropriate quantities on an ordering system or to prevent insurance policies being
purchased and then backdated.

Range check

Making sure a certain number of characters is entered. Like a range check, there can
Length check be an upper bound, a lower bound or both, as appropriate to your solution.
Usernames and passwords are often subject to length checks.

Prevents numbers being entered in text-only fields and vice versa. Useful in forms in

Type check a wide range of situations.

Ensures the entry of the correct character types in the correct order. Email addresses,
for example, must have an @ sign, but not at the start or end. There must be a full
Format check stop after the @ sign, but this can't be at the end, or immediately after the @ sign.
Format checks are also useful for postcodes and National Insurance numbers, and
they require somewhat more involved coding than most of the others.

This is applicable where every single valid entry that could be made by the user is on
a list somewhere. This might be a dropdown list, from which a month is chosen, or it
might be a text file containing every word in the English language. The latter would
be useful in a lookup check applied to a word game. Presenting the user with a
range of buttons (such as in choosing where to play in a game of chess) is also a type
of lookup check.

Lookup check

NEA Comanion for A Level OCR Computer Science Page 32 of 50 - © ZigZag Education, 2020

When you're incorporating validation into your solution, you're making a decision, which means that you can pick
up marks from part 3.1 if you justify that decision.

Descriptor How to get it
Mark band 1: State the validation routine you have added; for example, 'length check applied to the
Identify creation of a new username’.

Add some specifics. In the instance of a length check, there will be either an upper

Mark band 2: bound, a lower bound or both. For example, 'a length check has been applied to new
Describe usernames; any entry that is over 16 characters or under 8 characters will trigger an error

message that tells users the minimum and maximum length of a new username'.

Explain can mean ‘why' or 'how'. In this instance it means both. In answer to 'why', you
Mark band 3: should explain your choice of validation routine, as well as you choice of an acceptable
Explain range being defined as 8 to 16 characters. In terms of 'how', this is when you would

present your code and walk the reader through it.

In this instance, a length check was chosen, although other options would have worked.

Mark band 4: A format check could have been used to ensure that the username consisted only of letters
Justify and numbers. A lookup check could have been used to check that the username didn't

already exist. Why not one of these? Why not a combination of multiple validation checks?

3.6: Review

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4

Formal review is not Comment on the success Mark band 2 plus: Mark band 3 plus:

required for mark band 1. or otherwise of the Extend the review to most | Review throughout the

solution at some point key stages throughout iterative process.
during its development. the process.

A review is a mini evaluation at the end of each iterative cycle. To get into the top mark band, you need to have
a review at the end of every individual iterative cycle, and enough iterative cycles to cover development of your
whole solution.

To reach the top of that top mark band, the reviews need to be of a good quality, covering the following:

e A summary of what you've done in the outgoing iteration, ideally linked to your 2.1/2.2 breakdowns
e A comparison of what you accomplished with what you set out to do

e Adescription of what went well and what you found easy

e Adescription of what went poorly and what proved to be challenging

e Input from the stakeholder(s) as to their opinion of the solution so far

e Lessons that you have learned that might influence your approach to subsequent iterations

e Anoverall assessment of the success or otherwise of the iteration.

NEA Companion for A Level OCR Computer Scienc_e Page 33 of 50 © ZigZag Edacation, 2020

Iterative Development » Checklist V

MARK BAND 4: 13-15 MARKS

O Collectively, the evidence for the iterative stages covers your entire solution (i.e. all of your code is
documented in one or more of the iterative stages)

O Each iterative stage is clearly linked to the breakdown of the problem documented in section 2.1

O Each stage is backed up with detailed descriptions (what are you doing?), explanations (why are you doing
that?) and justifications (why did you do A when you could have done B?)

O Each iterative stage constitutes a prototype; this does not mean you need to have a fully formed version
of your solution at each stage - simply that you should have produced something self-contained, usable
and testable

O Code demonstrates modularity and good structure at all stages
O Annotations cover all subroutines and all variables throughout your code

O Every single variable, along with anything else you have chosen a name for, has a self-documenting
identifier, such that the purpose is clear just by reading the name

O Evidence of validation is provided at all appropriate stages

O All iterative stages are reviewed, with the review then feeding into the next iterative stage (the review for
the final iterative stage covers what you might have done next, had the process continued)

MARK BAND 3: 9-12 MARKS

O Iterative stages are still required to cover your entire solution
O Each stage should still be linked to the breakdown of the problem documented in section 2.1

O Each stage should be described (what did you do here?) and explained (why did you do it?), but
justification is not required in this mark band

O Prototypes (plural) are required, but not for every iterative stage

O The solution needs to be modular; classes as required, and subroutines called when necessary, with
minimal duplicate code

O The majority of the code should still be commented, although parts that are trivial, of obvious
functionality or a near-copy of already-commented code might be missing comments

O Most variables and data structures have sensible, self-documenting identifiers, although there are some
exceptions to this

O Validation is implemented and documented more often than it is missing
O A minority of stages might be missing a review section

MARK BAND 2: 5-8 MARKS

O Some parts of your code, which may be evident in the full listing in your appendices, are not
demonstrated or discussed in this section

Some skill is demonstrated in making the solution modular and well structured, but duplicate code might
exist, and the most efficient means of solving a problem might not always be apparent

Some annotation, which is useful, rather than simply of a token presence, is included, but not throughout
Some variables and data structures have self-documenting identifiers
Some useful validation is included and documented

a

Oo0ooano

Reviews exist for some iterative stages, and offer some genuine insight

MARK BAND 1: 1-4 MARKS

The mark scheme for mark band 1 is a list of aspects that are missing rather than aspects that are included.
If the majority of modularity, annotation, self-documenting identifiers, validation and review are either
missing, or only exist in some token way, you can expect a score from mark band 1. The more that's missing,
the lower that score will be.

-N EA Companion for A Level OCR Computer Science Page_34 of 50 ZigZag Education, 2020

4: Iterative Testing (10 marks)

Iterative testing, unlike post-development testing, takes place at the same time as iterative development.
Once you have produced some testable code, you should test it, document your tests, fix any problems that have
arisen and go back to development. In order to pick up all of the marks in this section, it should be completed at

the same time as section 3, iterative development.

Mark band 1 1-2 marks

Mark band 2 3-5 marks

Mark band 3 6-8 marks

Mark band 4 9-10 marks

Here, we focus on the shaded areas of the flow chart:

C Start)
v

Describe what you're
about to do

v

Write some code

v

Copy the key code into
your work

v

Describe, explain and

justify it
Test it and Make and
document the tests document changes
¥ /

No

Did it work?

h

Review this
iteration
[

Final No

iteration?

{ End)

Every time you run your program, whether it's working or not, you're conducting a test. You're not expected

to document every single one of these, as there could be thousands, but you are expected to show every

[J
part of the solution being tested, which will involve a large number of tests that are not successful.

NEA Companion for A Level OCR Cc;mputer Science Page 35 of 50 © ZigZag Education, 2020

4.1: Testing

MARK BAND 1

Provide some evidence of
testing throughout the
iterative process, i.e.
before the solution
is complete.

MARK BAND 2

The wording in the mark
scheme is identical for
mark bands 1 and 2, so the
emphasis is on the
frequency and quality
of testing.

MARK BAND 3

Mark band 2 plus:

Extend testing to cover
most of the iterative
development stages.

MARK BAND 4

Mark band 3 plus:

Extend testing to cover all
of the iterative
development stages.

Testing at this stage should be informed by what you planned in stage 2.6 (iterative testing design). You only
need to test any new code added since the last iteration. If you have deviated from the 2.6 plan, that is
absolutely fine. There is no need to go back and edit section 2.6, but you should explain what changes you have
made since the design phase, and why they were necessary ('there was insufficient time to complete this part’ is,
incidentally, a perfectly legitimate reason).

4.2: Remedial actions

MARK BAND 1

Remedial actions are not
required for mark band 1.

|

MARK BAND 2

Demonstrate, with
evidence and
commentary, how at least
two tests failed to
produce the expected
outcome, and what
changes were made
as a result.

MARK BAND 3

Mark band 2 plus:

Include explanations of
why those particular
changes were made.

MARK BAND 4

Mark band 3 plus:

Ensure all failed tests are
addressed, with the
commentary on changes
extended to cover
alternative plausible
approaches to fixing.

Unless you have failed tests, together with responses to those failures in order to remedy them, your iterative
testing section is not realistic. Essentially, you're making the claim that everything worked perfectly first time,
and that not a single mistake was made.

This part of the project is best addressed through the use of annotated screenshots. Show the reader what
happened and talk them through it:

1. Remind them of the test data, as spelled out in section 2.6
Show them the failed test via a screenshot and annotated code, and explain what's happened

2.
3. Fix the code and show it to the reader, highlighting and explaining any changes
4. Retest (and repeat from step 2 if it still doesn't work)

NEA Companion for A Level OCR Computer Science Page 36 of 50 © ZigZag Education, 2020

Sample iteration

Register Subsystem

Register ' Data analysis

Login Record attendance Extract from DB Draw dashboard

/’\
Get classes (Calculate percem‘ages)

In this phase, | will create the code that will calculate the percentage attendance of a single individual based on
number of classes attended and maximum number of classes. Ultimately, my system will create a dashboard
comprising all attendees, sortable into either alphabetical order or order of attendance. Before that dashboard
can be created, | am going to ensure that a single individual's data is correctly calculated. This way, if an error
occurs, that error exists only once, rather than repeatedly.

| am creating the code independently of the interface for now, as the interface is part of the 'draw dashboard’
subsystem. Accordingly, all data will be output to the console.

Sub Main()

'Array, which will normally be populated from DB
Dim attendanceArray() As Char = {"\", "\", "O", "A", "\", "\", "\", "0"}

Dim possible As Integer = @ ‘'number of possible attendandes
Dim actual As Integer = © 'number of actual attendances

'loop through the array
For loopCount = 1 To attendanceArray.Length
'don't count A for authorised absences, otherwise increment possible
If Not attendanceArray(loopCount - 1) = "A" Then
possible += 1
End If
'for a present mark, increment actual
If attendanceArray(loopCount - 1) = "\" Then
actual += 1
End If
Next

'calculate attendance as a percentage and display
Console.Writeline(actual / possible * 100)
Console.ReadlLine()

End Sub

NEA Companion for A Level OCR Computer Science Page 37 of 50 © ZigZag Education, 2020

The attendance array would normally be populated with data extracted from the appropriate record of the
database, but for now it is populated with the test data specified in my design. | chose this data as it includes all
possible attendance marks - a slash for present, a capital O for absent and a capital A for an authorised absence.
Authorised absences should be ignored by the system and should not affect the attendance figure.

The attendance in this case should be 71.4%.

Having tested this subroutine, it is a success, but | note that far more decimal places are used than are necessary.
It might also be useful to have the percentage sign displayed. The target is for the output to be ‘71.4%’ for this
data set, and line 22 has been modified as follows:

‘calculate attendance as a percentage and display

Console.WriteLine(Math.Round(actual / possible * 100, 1) & "%")

Here, | have used the Math.Round library function to display the answer to a single decimal place. | have then
used the ampersand concatenation operator to append a percentage sign. This approach was chosen because
the values of ‘actual’ and 'possible' will remain unchanged and can be used in subsequent calculations. This can
now be retested:

Wl C\Users\l.., — O X

This retest has demonstrated the desired result. In order to ensure that this part of the solution is working
perfectly, | need to test it with a range of data sets:

Dim attendanceArray() As Char = {"\", "\", "\", "\", "\", "\", "\", "\"}
To test that 100% attendance is correctly calculated:

B3 CA\Usersyl.. — O X

IIOUI’ tlo‘l’ “0“, lloll}

MY CaUsers\l... — O X

0y
, 0",

"0", IIDII, IIOIIJ IIOII, IIOII}

B? C\Users\..,. — O x

NEA Companion for A Level OCR Computer Science Page 38 of 50 © ZigZag Education, 2020

Dim attendanceApr‘ay() AS Char‘ = {Holl’ IIOII, ulollJ “0“, ||01|, "0", "0"3 n\u
To check that the loop picks up a single ‘present’ mark in the last element of the array (12.5%):

W1 CAUsers\l... — O X

| am not testing for invalid data (i.e. a character other than \, A or O) as validation is handled elsewhere in the
system - in the 'Record Attendance’ subroutine. This is a fairly small part of the system, but as it is central to the
whole solution, it was appropriate to have created it and tested it thoroughly before proceeding. | note that the
single decimal place is not displayed when the percentage figure is a whole number, but | do not believe this is a
significant enough anomaly to spend any additional time here - there is nothing ambiguous about "100%'’ or ‘0%
This part of the solution will now be tested alongside the 'Extract from DB’ subroutine, to ensure that data
extracted from the database has the same effect as data hard-coded into the array.

This is a single iterative cycle in a development phase that would contain many such cycles, given the
small scale of what it does. Nevertheless, all of the pieces are there. There is a description of what is
about to be coded, placed in the context of the whole system. Code (which is modular, annotated and

self-documenting) is written, described and tested. The outcome suggests that a modification should be
made, which is coded and retested before being reviewed. At all times, we are being told why an action is
being taken. Why this test data? Why the console output? Why no validation? The last sentence then
leads seamlessly into what the next iterative cycle would be.

NEA Companion for A Level OCR Computer Science Page 39 of 50 © ZigZag Education, 2020

Iterative Testing » Checklist ‘/

MARK BAND 4: 9-10 MARKS

O Each stage of the iterative development process involves testing; note that you are only eligible for this
mark if your iterative development work contains enough stages (i.e. you are in mark band 3 for section 3)

O There is evidence, and more than simply token evidence, of tests failing

O

Documentation has been included as to what was done to remedy all failed tests

O Remedial action (action to fix code after a failed test) is described (what did you do?), explained (why did
you do it?) and justified (why did you do A when you could have done B?)

MARK BAND 3: 6-8 MARKS

0 Most iterative stages involve testing, but not necessarily all; you might have tested all of a partially
documented solution, or part of a fully documented solution

O Some failed tests are included, though not necessarily in all iterative stages
O Documentation has been included as to what was done to remedy all apparent failed tests
0 Remedial action is described (what did you do?) and explained (why did you do it?), but not justified

MARK BAND 2: 3-5 MARKS

O Some of the iterative stages include testing

Note that the mark scheme descriptor ‘... provided some evidence of testing during the iterative
development process' covers mark bands 1 and 2, so is anywhere between 1 and 5 marks. To score at the
top of this band, you would expect around half of the iterative stages to include some documented
testing. More than this would be '... most stages of the iterative development...’, which would place it in
mark band 3.

O Some failed tests are included
0 Remedial actions are described, with supporting evidence, but not explained

MARK BAND 1: 1-2 MARKS

O Testing needs to have taken place during iterative development; if there is no testing until after
development has concluded, no marks can be awarded

O No failed tests or remedial actions are expected in this mark band

NEA Com;;anion for A Level OCR Computer Science Page 40 of 50 © ZigZag Education, 2020

5: Post-development Testing (5 marks)

This is the final round of testing, after which no additional development takes place. If you use the outcome of
any testing to improve your solution, you're still in section 4. This is the smallest section in terms of the marks
allocated to it, so you should spend the least time here. Nevertheless, it's still important, and a good post-
development testing section can make the difference between two grades in the coursework.

Mark band 1 1 mark
Mark band 2 2 marks
Mark band 3 3-4 marks

Mark band 4 5 marks

In the iterative development section, you were testing smaller pieces of the overall solution as you developed
them. Here, you should aim to test whether those separately developed pieces work correctly together. At this
point, a formal test table can be used, which should be informed by the test data you set out in section 2.7.
The test table, presented in landscape, should contain the following headings:

1. Atest number; you'll want to refer to individual tests in the evaluation, so this witl be needed later

2. A description of the test, in sufficient detail that a competent person could read it and carry out the test

exactly as you carried it out

Test data; for example, when you tested the login screen, exactly what username and password were entered?

4. Expected outcome; this is a description of what a successful test looks like, and should be specific enough
that a competent person could judge a passed or failed test without any other input from you

5. The actual result, which will be either 'success' or a description of exactly what happened

6. A reference to any supporting evidence, such as 'see screenshots #7 and #8' (it's best to avoid placing the
screenshots inside the table itself, as space is at a premium)

7. Commentary; a description of what that test shows us and why it was needed, ideally cross-referenced to
the original user requirements

5

Expected Actual

Description Test Data
== ESCUR Outcome Outcome

Evidence Commentary

A test table is not essential; it is not mentioned in the mark scheme, and some of OCR's exemplar

! candidate work uses a more narrative structure. However, use of a tabte will immediately alert you to any
parts that are missing, because the table will contain empty cells.

When providing evidence, you're quite likely to use screenshots of the program in operation, but you might also
include screenshots of data stores, such as a database, before and after an operation intended to add, edit or
delete data. You might include photographs of a screen if screenshots are unavailable, or photographs of an
external output peripheral, depending on your solution. Each of these, placed after the testing table, should be
uniquety numbered, with those numbers being entered into the 'evidence' column.

If your test evidence takes place on video rather than screenshot, the 'evidence' column should contain precise
time indexes instead.

NEA Companion for A Level OCR Computer Science Page 41 of 50 © ZigZag Education, 2020

5.1: Testing for function

MARK BAND 1

Include evidence to show
testing of some aspect
of your solution
after development
has concluded.

MARK BAND 2

Mark band 1 plus:

Ensure that some of the
tests cover testing
for function.

MARK BAND 3

Mark band 2 plus:

Provide a commentary in
addition to evidence for
the tests.

MARK BAND 4

Mark band 3 plus:

Include additional
evidence and commentary
to cover robustness in
addition to function.

Testing for function answers the question 'does it work?' What you will actually test will depend on the nature of
your solution, but you can expect to cover the likes of the following:

Do calculations provide correct results?
Are data retrieved from and inserted into data stores as expected?
Do key functions such as logging in and out work correctly?

Do validation routines work?

Mark band 4 adds a reference to ‘robustness’, involving the following questions in addition:

e Does validation prevent the program crashing (such as in the event of logging in with no user name)?
e Does the solution alert me to a missing database, rather than crashing or looping indefinitely looking for it?

When it comes to robustness, you're trying to break your program.

5.2: Testing for usability

MARK BAND 1

Usability testing is not
required for mark band 1.

MARK BAND 2

Usability testing is not
required for mark band 2.

MARK BAND 3

Provide commentary and
evidence to show testing
for usability.

MARK BAND 4

The wording in the mark
scheme is identical for mark
bands 3 and 4, so the
emphasis is on the number
and quality of the tests as
well as the insight offered
by the commentary.

Usability will also vary based on the nature of your solution, but the focus will be on the interaction between the

user and the program:

e Do keyboard and mouse inputs produce the required responses?
e Do any accessibility features, such as changing font sizes and background colours, work correctly?
e Do any additional input/output devices, including speakers, function as expected?

In order to enter mark band 3, the commentary is essential. If there's anything about a test that isn't

! covered in any of the other columns, it should be placed into the ‘commentary’ column. This is most
likely to be explanations of why a test was necessary, or how important a particular test was.

_NETCompanion for A Level OCR Computer Science

Page 42 of 50

© ZigZag Education, 2020

Post-development Testing » Checklist V

MARK BAND 4: 5 MARKS

Testing, which includes evidence (such as with a screenshot) and commentary, covers the following:
O Function - do the key processes perform as expected?

O Robustness - does the solution function irrespective of invalid data input, missing files or anything that
might make the solution crash or otherwise malfunction?

O Usability - do all aspects of the interface function as expected?

MARK BAND 3: 3-4 MARKS

Testing, which includes evidence (such as with a screenshot) and commentary, covers the following:
O Function - do the key processes perform as expected?
O Usability - do all aspects of the interface function as expected?

MARK BAND 2: 2 MARKS

O Evidence of final testing is included, which tests for function (checking that key processes perform as
expected); commentary may be either weak or missing

MARK BAND 1: ! 1 MARK

O Testing needs to have taken place during iterative development; if there is no testing until after
development has concluded, no marks can be awarded
O No failed tests or remedial actions are expected in this mark band

NEA Companion for A Level OCR Computer Science Page 43 of 50 © ZigZag Education, 2020

6: Evaluation (15 marks)

The evaluation is the point at which you look back at the solution and examine how well it addresses the
problem. At this stage, you can actually gain marks for any shortcomings you made earlier, as long as you reflect
well on them. The evaluation is informed by all previous sections, as you might wish you had done something
differently in each of the analysis, design, development and testing stages. If that's the case, this is where you
can talk about it.

Mark band 1 1-4 marks

Mark band 2 5-8 marks

Mark band 3

9-12 marks

Mark band 4

13-15 marks

6.1: Examining success (or otherwise)

MARK BAND 1

MARK BAND 2 MARK BAND 3 MARK BAND 4

Using the results of
testing, talk about

Mark band 1 plus:
Include each of the

Mark band 2 plus:
Include partial success as

Mark band 3 plus:

whether the solution is a
success or a failure.

success criteria (for
part 1.7), commenting on

an outcome in addition to
‘success' or ‘failure’ for

Justify any choices you
have made in ensuring
that the solution will

the success or failure each success criterion. meet stakeholder needs.

of each one. Describe how future

development could
address success criteria
that have not been
fully met.

A poorly written evaluation can be quite woolly, and can lack direction. The best way to begin an evaluation
that's assessed by this particular mark scheme is with structure. Towards the end of your analysis, you specified
a set of success criteria, which were to be the standards by which you planned to judge the success, or otherwise,
of your solution.

Each of those criteria should now become a title to a paragraph, in which you address the following:

1. To what extent have you met that success criterion? You might not have attempted it as you ran out of
time; you might have exceeded the standard you set for yourself; it might be somewhere in between.

Don't shy away from success or failure in this part of your work, as you get credit for how well you recognise
them. You should pay close attention to any success criteria which lie somewhere in the grey area between
success and failure.

2. Explain why you have come to the conclusion you reached in step 1, and provide evidence to back up your
claim. If it doesn't work, show the error message and explain what caused it. If you went further than
expected, perhaps line up the design with reality and highlight the differences.

3. Describe and justify any improvements you would make to your solution in order to better address this success
criterion in future. Remember, this is a hypothetical future, and you'll never have to actually make these
changes, so don't be afraid to be ambitious. Say what changes you would make, describe how you would go
about making them, and finally talk about why these changes would make your solution a better one.

If possible, try to get some stakeholder input into the evaluation. That would count as evidence, making

® | it useful for step 2.

NEA Companion for A Level OCR Computer Science Page 44 of 50 © ZigZag Education, 2020

6.2: Assessing usability

MARK BAND 1 | MARK BAND 2 | MARK BAND 3 ‘ MARK BAND 4
Usability assessment Provide evidence and The wording in the mark Mark band 3 plus:
is not required for commentary of usability | scheme is identical for mark Describe, with explanatory
mark band 1. features that have been | band 2 and mark band 3, so | evidence, whether the use of
set out in section 2.4. the emphasis is on the usability features has been a
number and quality of success, partial success
usability features. or failure.

Usability was initially addressed in section 2.4, where you spelled out which usability features you intended to
deploy within your solution. These might have been particular layouts, specific colour combinations, accessibility
features or a combination of all of these. Under the heading 'usability’, examine how well you have done in this
regard, in the same way that you addressed section 6.1:

1. Make a judgement as to the extent to which you have produced a usable, accessible solution
2. Explain, with supporting evidence, how you came to that conclusion
3. Suggest improvements to the usability of your solution, justifying as you go

6.3: Maintenance and limitations

MARK BAND 1 MARK BAND 2 MARK BAND 3 MARK BAND 4
Maintenance and Describe limitations of Mark band 2 plus: Mark band 3 plus:
limitations are not the solution in terms of Include issues of Describe how changes could
required for mark features it does not maintainability. To what be made in the future to

band 1. include and factors that | extent have you produced reduce/mitigate limitations
have prevented the a maintainable solution? | and to make the solution more
inclusion of maintainable.
additional features.

Under the heading of 'limitations’, talk about what your solution doesn't do that you had planned for it to do.

You can also include any shortcomings that became apparent as you developed. For example, perhaps you realised
part way through development that a web interface did not display correctly on a mobile device. This might not
have made it into your original success criteria, but it can still be discussed under ‘limitations’. For each limitation:

1. What was supposed to happen?

2. What, if anything, did happen? Your limitation might come in the form of partial success.

3. Why did this take place? This might be a technical reason, or it might have something to do with an over-
ambitious project or an underestimation of the complexity involved.

4. How would you approach problems like this differently in future in order to avoid similar limitations?

'Maintainability' is a measure of how readily another person could make changes to your solution if changes were
required. The following are some characteristics of maintainable code:

e Self-documenting identifiers - everything you have named, you have named in such a way that its purpose is
apparent from the name alone. This applies to variables, data structures, classes, forms, form controls,
external files, fields within external files and anything else that you, the programmer, gave a name to.

e Modularity - each subroutine should be self-contained, and separately designed, produced and tested, with
no reliance on global variables that could have been unexpectedly changed by other subroutines.

e Appropriate use of variables and constants - variables and constants should be used in all calculations and
other processes, rather than literals. Additionally, these variables and constants should be easy to locate
and change. If the VAT rate changes, for example, and your solution uses that rate in some way, there
should be a single easy-to-locate change to make to your code to reflect the new rate.

e Detailed annotation - there should be comments throughout your code describing what each part of it does.
There should never be a section of code without comments.
e Appropriate version numbers - given the sequence of prototypes that have been rolled out throughout the

project, it's possible that someone might accidentally begin changing the wrong version of your solution.
There should be measures in place to ensure that older versions survive, but the latest version is apparent.

NEA Companion for A Level OCR Computer Science Page 45 of 50 © ZigZag Education, 2020

Your section on maintainability should mirror previous sections within the evaluation:

1. To what extent is your solution maintainable (using the descriptions above)?
2. Why have you come to that conclusion (provide evidence)?
3. How could your solution be made more maintainable (including a justification of your answer)?

6.4: Quality of written communication

The final element of your work to be assessed is how well written your evaluation is. As you might expect, it's
beyond the scope of this resource to teach you how to write well, but there is some advice which, if followed, can
make the best use of your current abilities:

e Don't make unsubstantiated claims. If you say that something worked, or didn't work, or partially worked,
provide evidence to back this up. Each claim in your evaluation should be supported by a screenshot or a
reference to a test number.

e Incorporate structure into your work. This can be done using subtitles in much the same way that they are
used here. Have a section entitled 'test results’, where you talk about the test results. Then a section about
'usability’, and so on. Avoid bouncing back and forth between different topics, as it can throw the reader and
cost you marks.

e Include a table of contents to allow sections to be located more quickly (and present a structure?).

e Keep it relevant. You should write about success criteria, testing, usability, limitations, maintenance and
potential improvements. Anything else is not creditworthy, and not worth your time.

e Use a spellchecker, read through your work and ask someone else to read through it as well.

For some students, the evaluation can be a little too open-ended. If you're struggling to get words on the page
at the start of the evaluation, or a section of the evaluation, the following templates might be of use to you.
They don't cover everything, and are not intended to - each evaluation should be unigue - but they might help
you to make a start.

One key strength of the solution that is apparent throughout the testing is
Upbeat Although challenges were encountered, including and , testing has
i demonstrated that a great deal of functionality has been provided by the solution,
During the analysis stage, it was apparent that the stakeholders' highest priority was i
and this has clearly been delivered, as seen in test
While some success has been encountered during the development of this solution, it is important
to note that key functionality, namely , has not been delivered.
Downbeat " . . . N
opening A shortcoming borne out by the testing, which cannot be ignored, is
The key success criterion in this project was , and tests and
provide definitive evidence that this criterion has been met.
In some respects, this solution is both a success and a failure.
Mixed Not all success criteria have been fully met, but it is important to note that the solution does offer
opening some key functionality, including
Admittedly, the solution does not provide 100% of its intended functionality — both
and are incomplete — but some success has been encountered.
Evidence for this claim can be found in tests and , which clearly show the
process of
Providing Test shows the state of the system before , and test shows the
evidence state of the system afterwards.
This can be seen to be the case throughout section of the post-development testing, in
particular during test and on the associated screenshot.
Although this solution fully satisfies all success criteria, there is plenty of scope for future
development. Firstly...
Future Naturally, the first priority in improving the system would be satisfying the presently unmet
improvements | syccess criteria, but beyond that...
There is scope for improvement, with the most likely future focus being...

NEA Companion for A Level OCR Computer Science Page 46 of 50 © ZigZag Education, 2020

Evaluation » Checklist V

MARK BAND 4: 13-15 MARKS

[0 Evaluation needs to compare all test evidence (iterative and post-iterative) with all success criteria
(section 1.7) in order to assess the success of the solution

O Each success criterion, including usability and maintainability, should be assessed as a success, partial
success or failure, with explanations and evidence to back up each assessment

O Limitations should be critically addressed - what are they, and how significant are they?

O Future improvements should be suggested for partial successes and failures in terms of success criteria,
usability and maintainability

MARK BAND 3: 9-12 MARKS

O Evaluation still needs to compare all test evidence with all success criteria (section 1.7) in order to assess
the success of the solution

O Each success criterion should be assessed as a success, partial success or failure, with explanations and
evidence to back up each assessment; usability and maintainability do not need to be included here

[0 Evaluation should still include usability features and maintenance issues, but these only need to be
described rather than explained

O Limitations should be critically addressed - what are they, and how significant are they?

00 Future improvements should be suggested, but only with regard to the success criteria

MARK BAND 2: 5-8 MARKS

0 Comparisons of success criteria and test evidence are still required, but some test evidence and/or some
success criteria might not be included in the evaluation

[0 Evidence of usability features should be incorporated into the evaluation in some form

O Limitations still need to be addressed, but only in a descriptive way; their significance might not
be mentioned

MARK BAND 1: 1-4 MARKS

O Determine whether the solution is a success or a failure based on the test evidence; there may or may not
be any reference to the original success criteria

NEA Companion for A Level OCR Computer Science Page 47 of 50 © ZigZag Education, 2020

Suggested Project Structure

ANALYSIS

e Stakeholders

e Research of existing solutions

e Essential features

e Limitations

e Hardware and software requirements
e Success criteria

o Computational methods

DESIGN

° Problem decomposition
° Structure of the solution
e Algorithm design

o Algorithm 1

o Algorithm 2

o Algorithm 3

o etc
) Usability features
) Variables and validation
o Iterative test data
) Post-development test data

ITERATIVE DEVELOPMENT AND TESTING

e Prototype 1:

Introduction and reference to problem decomposition
Prototype code
Description of code
Testing of code
Identification of errors
Retesting of code
Review

e Prototype 2 (as above)

e Prototype 3

] etc.

O 0O 0O 0O 0O O ©

POST-DEVELOPMENT TESTING

° Test table
° Test evidence

EVALUATION

° Comparing success criteria and test data
° Usability

o Maintenance and limitations

° Future improvements

NEA Companion for A Level OCR Computer Science Page 48 of 50 ©?gZag Education, 2020

Glossary

Throughout this resource, there are some important words that you will encounter quite a few times.
It's important to understand what they mean, so if you read this and are still unclear, ask your peers, ask your
teacher, check definitions online or in a textbook, or do whatever you can to ensure a good understanding.

In terms of programming, 'annotation’ or ‘comments' make up the English language pieces
of text that sit alongside program code. Compilers ignore annotation, since it is there for
Annotation humans, rather than the computer. Good-quality program code is always annotated as an
aid to maintainability; it helps the next person who deals with the code to understand it
more quickly.

Anything more complex than a variable that can store data is a data structure. This includes

Data structure : e . .
arrays, lists, graphs, trees, queues, stacks and dictionaries, as well as external files.

The most open-ended verb in any mark scheme, 'describe’ can cover any of 'who’, 'what’,
'when' and 'where'. You might be describing a piece of existing software (what does it do?),
a user interface (where is the 'OK’ button?), a potential user of your system (who is the
stakeholder?) or a process (when does the validation take place?). Often, it's a combination.
If you're writing in general terms about something, you're probably describing it, and
'describe’ can be found clustered around the bottom-to-mid mark bands.

Describe

The word 'evaluate' comes from the word 'value'. If you're evaluating your solution, you're
assessing its overall worth, as well as the worth of any individual features of it.

Evaluate For example, if your interface looks good (positive), but doesn’t work (negative), you would
need to weigh these two factors against each other. Coming to the conclusion that the
failure for it to work outweighs its appearance would be an evaluation.

At some point, either in the iterative development phase or during the evaluation, you'll
come to the conclusion that something either works, doesn’t work, or is somewhere in
between. As well as stating that, for instance, ‘this causes the program to crash’, you
Evidence should provide evidence. This is usually in the form of a screenshot, but it might vary,
depending on what you're trying to prove.

Evidence might be in the form of a completed questionnaire if your claim is ‘my stakeholder
prefers the GUI interface’.

A common verb among the mid-mark ranges; if you're explaining something, you're usually
Explain answering the question ‘why’, sometimes 'how' and occasionally both. For example, if you're
explaining your choice of programming language, why did you choose that language?

You can identify something in a sentence or less. If you were asked to identify the external
peripherals required for your solution, ‘'mouse, keyboard, monitor’ could be enough.

dentify Any more detail, such as the resolution of the monitor or the language layout of the
keyboard, would be describing.
This describes the process of making multiple passes through the same task. In a linear
approach to software development, you would design, then produce, then review a
Iterative solution. In an iterative approach, which is what this project requires, following the design,

you produce part of the solution, then review it. After this, you might produce another part,
have a second attempt at producing that same part, or even go back to the design and
revisit that phase. In an iterative process, some stages take place repeatedly.

.NEA Companion for A Leve_l OCR Computer Science Page 49 of 50 © ZigZag Education, 2020

Justify

The word 'justify’ appears in the mark scheme 18 times, typically in the higher mark bands.
Simply put, it means giving an explanation for something you have done.
Unfortunately, the word 'explain’ also appears quite a lot, which doesn't help matters.

To justify something, try this three-step approach:

A. Describe what you did — whatever it is you're going to justify.

B. Describe what you might have done instead, but didn’'t. You might have opted to store
data in a text file, in which case, you didn't store it in a database.

C. Explain why you opted for plan A instead of plan B.

Modularity

This is a measure of how well a problem or a solution is broken into pieces. In terms of
software development, you should be aiming to make a modular solution. This might
involve the creation of classes, and it will certainly involve representing each individual
task with an individual subroutine. Through good use of variables, parameters and return
values, modularity reduces the amount of code by minimising duplication of code. If you're
copying and pasting large amounts of code, the chances are that you're not developing a
modular solution.

Problem

In programming, this simply means the situation for which you are going to write a
program. It doesn't necessarily mean there's something wrong, although usually, if you're
trying to improve a situation, it's not perfect.

Prototype

A prototype is a version of an unfinished solution. It might be an attempt at the whole
solution, or perhaps some part of it. It is typically imperfect, and the main purpose of a
prototype is to learn something from it in order to make the next version better.

Solution

This covers a program, together with any associated hardware. It is what you are going to
create in response to the problem you identify.

Stakeholder

A stakeholder is anyone with an interest in your solution. The most important stakeholder
is the person who will use your program, but there may well be other stakeholders too.

Usability

Validation

A usability feature is some aspect of a program'’s user interface that maximises ease of use.
A shortcut key and an icon with a tooltip are usability features. A facility that magnifies
text is also a usability feature, because it makes a program easier to use for people who
struggle with small text.

The following list of usability features is by no means exhaustive:

° Help features, whether that's a discrete 'help’ section, or perhaps a characteristic
whereby right-clicking on a button tells you what that button's purpose is

o Error messages that offer guidance on how to interact differently with the system

o Consistent positioning of controls, such as always placing the OK button in the
bottom-right of a window

) Ensuring resemblance to other software, maximising a user's ability to make
immediate use of the software

. Minimising the number of clicks needed to perform an action

o Structuring screen layout so that controls are positioned in the order in which they are
needed, i.e. left to right, top to bottom

o Preventing user error by disabling error-inherent features, e.g. causing any non-
numeric entry into a particular text box to be ignored

o Speeding up data entry by including easily removable default values in text fields

This is a process that ensures that entered data is reasonable and sensible. Any invalid
data is prevented from entering the system. This would include entering a date of birth as
being some day in the future, or a 50-character postcode.

NEA Companion for A L_eva OCR Computer Science Page 50 of 50 © ZigZag Education, 2020-

